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A B S T R A C T

Most object recognition methods rely on contour-defined features obtained by edge detection or region
segmentation. They are not robust to diffuse region boundaries. Furthermore, such methods do not exploit
region color information. We propose color-blob-based COSFIRE (Combination of Shifted Filter Responses)
filters to be selective for combinations of diffuse circular regions (blobs) in specific mutual spatial arrange-
ments. Such a filter combines the responses of a certain selection of Difference-of-Gaussians filters,
essentially blob detectors, of different scales, in certain channels of a color space, and at certain relative
positions to each other. Its parameters are determined/learned in an automatic configuration process that
analyzes the properties of a given prototype object of interest. We use these filters to compute features that
are effective for the recognition of the prototype objects. We form feature vectors that we use with an SVM
classifier. We evaluate the proposed method on a traffic sign (GTSRB) and a butterfly data sets. For the GTSRB
data set we achieve a recognition rate of 98.94%, which is slightly higher than human performance and for
the butterfly data set we achieve 89.02%. The proposed color-blob-based COSFIRE filters are very effective
and outperform the contour-based COSFIRE filters. A COSFIRE filter is trainable, it can be configured with a
single prototype pattern and it does not require domain knowledge.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Color discrimination is a powerful vision faculty of primates, who
process color information in several areas of their visual system:
from specialized cells in the retina [1] and lateral geniculate nucleus
(LGN) [2] to cortical visual areas V1, V2 and V4 [3]. While the
evolutionary explanation of the uniqueness of primates in exploiting
color is still a debatable topic, it has been demonstrated that color
facilitates the recognition of objects by man and computer [4–6].

Most frequently, automatic recognition of objects has been
addressed by considering shape information, characterized by the
spatial arrangement of contour parts [7,8]. If color is used at all, it is
deployed for region segmentation and the contours of the regions are
subsequently used for shape recognition. Such methods, however,
are not able to distinguish objects which have very similar shapes
and can only be distinguished when color is also taken into account,
Fig. 1.
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In the retina and the LGN there are neurons with center-surround
receptive fields that respond to changes in color contrast. While
there is neurophysiological evidence that some orientation-selective
neurons in area V1 process color information [9,10], it is not clear
how color is processed further to contribute to effective object
recognition in visual cortex.

Yet, in order to illustrate the importance of color in human
visual perception we refer to two different artistic techniques: pencil
drawing vs. watercolor. In the former one, an artist creates shapes
by drawing the contours of objects, while in the latter one shapes
are formed by a set of color blobs with diffuse boundaries. This is
in a way similar to the duality between contour- and region-based
segmentation in computer vision. Fig. 2 shows examples of a line
drawing and an image with diffuse boundaries both derived from the
same painting.

A highly effective contour-based approach to object recognition
in computer vision called COSFIRE (Combination of Shifted Filter
Responses) has been introduced in [11] and has been found effective
in various computer vision applications [12–16]. It uses information
about the spatial arrangement of edges/contours of a given pattern
of interest in gray-scale. A COSFIRE filter response is computed as the
weighted geometric mean of the responses of certain orientation-
selective (Gabor) filters at specific locations. While COSFIRE filters
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Fig. 1. Examples of objects that are difficult and in some cases even impossible to distinguish without color information: (a) carrot vs. parsley root, (b) the flags of France and Italy,
(c) oranges vs. peaches, (d) red vs. green bottles of the same brand. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.)

are very effective to detect and recognize objects that are character-
ized by contour-defined shape information, they lack the ability to
distinguish objects that have similar shapes but different colors such
as those shown in Fig. 1. This is because, they take into account only
contour information and do not use color at all.

In this study we propose trainable COSFIRE filters that are selec-
tive for the geometrical arrangement of blobs in given patterns of
interest. We use the responses of blob detectors to extract luminance
and color information that characterize the interior of regions. The
core idea of the proposed filters is to represent a pattern by the spa-
tial arrangement of a set of luminance and color blobs. The mutual
spatial arrangement of blobs describes the shape of an object, while
the channels of given color space at which the blob detectors give
strong responses carry information about the luminance and color
distribution in the concerned pattern. Specifications about which
DoGs to take, in which channels of color space to apply them, and
in which positions to consider their responses are determined in an
automatic configuration process applied on a prototype pattern.

This paper is organized as follows: in Section 2 we provide an
overview of related work. In Section 3 we describe the color-blob-
based COSFIRE filters that we propose. In Section 4 we provide
experimental results on the traffic signs recognition benchmark
(GTSRB) and the butterfly data sets. In Section 5 we discuss cer-
tain aspects of the proposed method and we draw conclusions in
Section 6.

Fig. 2. (a) Line drawing obtained with the push-pull CORF algorithm [17] and (b)
image with diffuse boundaries obtained from the same painting using Gaussian blur-
ring. It is much easier and quicker to recognize the celebrity in the latter image as the
yellow of the hair, the pale pink of the skin and the blue make-up are defining features
of this emblematic image. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

2. Related work

The robustness, efficiency and stability of color in human visual
perception have motivated researchers to deploy color for object
recognition [18]. There is a large body of work about object
recognition based on combination of shape and color such as
SEEMORE [19], C-SIFT [20], OpponentSIFT, RGB histogram, opponent
histogram, transformed color histogram [21], color moments, color
moment invariants [22] as well as various image retrieval appli-
cations [23–25]. Some invariance properties of color (related to
viewing direction, highlights and illumination direction) have also
been proposed [6,21,26].

Keypoint identification, description and matching are techniques
which have been extensively used in the last decade for object
recognition and image classification and retrieval [27]. In the com-
puter vision literature, the term ‘keypoint’ is used to refer to the
center of a (relatively small) image area with some characteristic
distribution of gray level or color values. A certain keypoint descrip-
tor (e.g. histogram of gradient values) is associated with such an area
to represent this distribution. A keypoint may have some percep-
tual saliency but in general its selection as a keypoint is the result of
the application of a computer algorithm rather than of the percep-
tual preference of a human observer. There is a great deal of work
about various keypoint descriptors, such as HOG [28,29], SIFT [30],
SURF [31], LBP [32], and BILD [33]. Descriptors that use color infor-
mation include C-SIFT [20], OpponentSIFT, RGB histogram, opponent
histogram, transformed color histogram [21], color moments and
color moment invariants [22].

The use of existing keypoint descriptors or the development of
new ones requires expert knowledge about the field in which they
are applied. Moreover, it is usually common that a collection of such
descriptors is required to index images [34]. As an alternative to
such features, unsupervised feature learning approaches have been
proposed [35–37]. They learn feature descriptors from training data
without the need of having expert knowledge. In various benchmark
data sets, pattern classification methods that use learned features
have been demonstrated to outperform those that use algorithm-
defined or ad hoc ones [38,39]. Feature learning approaches require
lots of training data, which may not always be available or may be
prohibitively expensive to obtain. This requirement also contrasts
with the remarkable ability of the visual system of the brain that
learns from few examples [40].

An object can be represented by a collection of keypoint
descriptors extracted from it. The visual bag of words (BOW) [41,42]
is one such approach which has gained particular popularity. It
considers a histogram of keypoint occurrences in an image or a given
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bounding box, without using further information about their spatial
arrangement. One way to consider spatial arrangement of keypoints
is to apply spatial tiling followed by a spatial pyramid kernel [43].
In [44,45], the authors propose probabilistic approaches to model the
shape of an object.

The method that we propose is a trainable filter approach, in
that the selectivity of a filter (for shape and color) is learned
from a prototype pattern that can either be specified by a user
or automatically discovered by a system. Unlike the existing fea-
ture learning methods, a COSFIRE filter can be configured with one
training example and is also tolerant to translation, rotation, scale
and reflection transformations. The COSFIRE method is a filtering
approach and besides recognition it possesses localization abilities
up to a pixel precision. This is in contrast to other methods, such as
BOW [41,42] that rely on sliding window techniques and can only
indicate if a certain pattern is present or not anywhere in given
bounding boxes.

3. Method

Fig. 3 (a) shows an image with round and oval (elliptical) diffuse
blobs of different sizes and colors. We indicate with a dashed black
circle an arrangement of three disks and an ellipse, which we show
separately in Fig. 3 (b). We consider this arrangement as a prototype
pattern of interest, and use it to automatically configure a trainable
filter which will be selective for the same and similar patterns.

The filter that we propose is based on the COSFIRE approach that
was introduced in [11]. In that study, the authors demonstrated how
a COSFIRE filter can be configured to be selective for an arrange-
ment of contour parts, essential elements of shape, and how it can be
applied to grayscale images. Here, we propose a COSFIRE filter that is
selective for a preferred arrangement of luminance and color blobs.
Note that the original contour-based COSFIRE approach will fail on
the patterns shown in Fig. 3 (a) because they do not exhibit clear
contours.

The COSFIRE filter that we propose uses as input the responses
of certain Difference-of-Gaussians (DoG)1 filters applied to the
luminance and color-opponent channels at certain positions with
respect to its center. A DoG filter achieves strong responses to blobs
that have (roughly) the same size and shape as the inner region of
the DoG function [46].

We compute the response of a COSFIRE filter as the weighted
geometric mean of the concerned responses of its constituent DoG
filters. Consequently it responds strongly to a specific combination
of color blobs. The arrangement of blobs is determined in automatic
configuration step, which we explain below.

3.1. Configuration of a color-blob-based COSFIRE filter

The configuration phase consists of detecting blobs in the lumi-
nance (L*) channel and the color (a*, b*) channels using DoG filters
and extracting the properties of the detected blobs together with
their mutual spatial arrangement.

We transform a given prototype image to L*a*b* color opponent
space as it approximates the human perception of color [47]. For the
a* and b* channels a pixel value of 0 means that there is only lumi-
nance in that location; i.e. no color (hue) information. We denote by
Ia(x, y) the value at location (x, y) in the channel a (a ∈ {L*,a*,b*}).

3.1.1. Detection of blobs
We denote by DoGs ,d=+(x, y) a center-on DoG function, with

an excitatory (positive) central region and an inhibitory (negative)

1 A Laplacian of Gaussian can also be used instead of a DoG.

+ + +
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Fig. 3. (a) Synthetic image of color blobs with diffuse boundaries. The dashed black
circle indicates a prototype pattern of interest (of size 800 × 800 pixels) that is shown
separately in (b). The white cross marker indicates the center of the chosen proto-
type. (c–e) a*, b* and L* color channels of (b), respectively. (f) The response image of a
center-on DoG filter (s = 84) applied to the image in (c). (g) The response image of
a center-on DoG filter (s = 81) applied to the image in (d). (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
this article.)

surround. The parameter s is the standard deviation of the outer
Gaussian function:

DoGs ,d=+ (x, y)
def
=

exp
(

− x2 +y2

2(0.5s)2

)
2p(0.5s)2

−
exp

(
− x2+y2

2s2

)
2ps2

(1)

A center-off DoG function is denoted by DoGs ,d=−(x, y) and is
defined as the negative of DoGs ,d=+(x, y). For more technical details
about blob detection with DoG filters we refer the reader to [46,48].

This type of function is an accepted computational model of some
cells in the lateral geniculate nucleus (LGN) of the brain of pri-
mates [49,50]. We set the standard deviation of the inner Gaussian
function to 0.5s , a decision that is supported by the studies reported
in [46,51].

For a given location (x, y) and a channel intensity distribution
Ia(x′, y′) the response da,s ,d(x, y) of a DoG filter with a kernel function
DoGs ,d(x − x′, y − y′) is computed by convolution:

da,s ,d (x, y)
def
= |Ia ∗ DoGs ,d|+ (2)

where |.|+ denotes half-wave rectification. A DoG filter achieves a
strong response to a circular pattern with an area that fits the central
region of the DoG function, and it does not respond to homogeneous
areas. Fig. 3 (f–g) show two such examples. In [48], it was shown
that the relationship between the parameter value of s of the DoG
function and the radius r of the optimal disk that elicits the maximum
response is defined as r ≈ 2cs

√
(− logc)/(1 − c2), where c stands

for the ratio between the standard deviations of the inner and outer
Gaussian functions. For c = 0.5, the above equation is simplified to
r ≈ 0.96s .

3.1.2. Determining parameter values
The COSFIRE filter that we propose takes as input the responses of

a set of DoG filters in different locations. The preferred polarity, stan-
dard deviations, locations and color channels at which we take their
responses are automatically determined from a prototype example
with the procedure explained below.

For each of the L*, a* and b* channels we apply a bank of DoG fil-
ters. For the image (800 × 800 pixels) in Fig. 3 (b), which we use as an
example, we use 15 values of the parameter s (s ∈ {60 + 3i | i =
0 . . . 14}) for both centre-on and centre-off DoGs so that they respond
to blobs with radii roughly between 60 and 100. Then we take the
responses that are greater than a fraction t1 (in this example we use
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t1 = 0.8 for L* channel and t1 = 0.5 for a* and b* channels) of
the maximum response across all coordinates (x, y) and all s values
for any combination of a and d. The elliptical shape in grayscale in
Fig. 4 (a) consists of the maximum superposition of the thresholded
responses of this bank of center-on DoG filters to the channel a* of
the image in Fig. 3 (b).

Next, we apply an iterative procedure to determine which DoG
filters and at which locations achieve strong responses in the L*, a*
and b* channels. In the first iteration we take the location of the
maximum DoG response across all values of s used. For the a* or b*
channels, if the intensity value in that location is within a range of
threshold values around 0 then we ignore it and consider the loca-
tion of the next maximum DoG response. This is because a value of 0
represents no color information and values very close to 0 represent
very low color information. The lower lt and upper ut bounds of this
range of threshold values are determined adaptively for each image
I: lt = −max(5, 0.4|min(Ia)|) and ut = max(5, 0.4|max(Ia)|), where
the constant values 5 and 0.4 were determined experimentally on
some training data. This restriction allows us to consider only regions
where there is significant color information. For the L* channel, we
use this criterion in the opposite way. If both values in the a* and
b* channels at a specific location are outside the range specified by
lt and ut then we ignore it and consider the location with the next
maximum value. This means that we consider luminance infor-
mation only at locations where there is no (or very low) color
information.

For a selected location (x′, y′), an example of which is indicated
by the red spot in Fig. 4 (a), we form a tuple of five parameters
(a1,s1, d1,q1,01), where a1 represents the color channel, d1 rep-
resents the polarity (centre-on or centre-off), s1 represents the
standard deviation of the DoG filter that achieves the maximum
response at the point (x′, y′), and (q1,01) represents the distance and
polar angle of that point with respect to the center of the prototype
pattern.

The yellow circle (of radius 0.96s1) around the red spot indicates
the boundary of the inner region of the determined DoG function. We
set to zero the responses of all DoG filters within that region, such
that they will be disregarded in the subsequent iterations. Fig. 4 (b)
shows the remaining DoG responses.

The red spot in Fig. 4 (b) indicates the location of the maximum
response in the second iteration. If the preferred disk of
the corresponding DoG filter around this location does not overlap
more than 60% with the preferred disks of the DoG filters determined

(a) (b)

Fig. 4. First two iterations of the configuration procedure applied with center-on DoG
filters to the a* channel of the image in Fig. 3 (d). The gray level of a pixel represents
the maximum value superposition of the thresholded (at a fraction t1 = 0.5 of the
maximum response) responses of a bank of centre-on DoG filters with 15 values of s
at that position. The yellow circle indicates the boundary of the inner support region
of the DoG filter which gives maximum response at its center indicated by the red
dot. The polar coordinates (qi ,0i) of each such point are determined with respect to
the center of the prototype. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

in the previous iterations, then we form a new tuple for this location,
otherwise we consider the next maximum response. We repeat this
procedure until there are no more valid locations to be considered.

We denote by Sf =
{
(ai,si, di,qi,0i)|i = 1 . . . nf

}
the set of param-

eter values that describe the characteristics of the given prototype
pattern f, where nf stands for the number of determined color and
luminance blobs in the concerned pattern. For the pattern of inter-
est shown in Fig. 3 (b), the configuration procedure described above
results in eleven blobs with parameter values specified by the tuples
in the following set:

Sf =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

:
(a4 = a∗, s4 = 69, d4 = −, q4 = 211, 04 = 3p/4),

:
(a7 = b∗, s7 = 81, d7 = +, q7 = 204, 07 = 3p/4),

:

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

The image in the bottom of Fig. 5 (a) illustrates the structure of
the configured filter Sf. Every tuple in Sf is illustrated by a diffuse
color blob and a circle. The colors are determined from the polarity
and color dimension. For channel L* we use white when d = + and
black when d = −, for channel a* we use magenta when d = + and
cyan when d = − and for channel b* we use yellow when d = +
and blue when d = −. If two blobs overlap each other the color of
the intersection region is the combined color of the two blobs. For
instance, the cyan and yellow circles in the north west correspond to
tuples 4 and 7, respectively. The green blob that they surround is the
combination of yellow and cyan.

3.2. Application of color-blob-based COSFIRE filters

In the following we explain how we use the parameter values
determined in the configuration stage to compute the response of
the proposed color-blob-based COSFIRE filter.

3.2.1. Shifting the responses of the selected DoG filters
For each tuple i in the set Sf, we first compute the responses of

a DoG filter with function kernel DoGsi ,di
to the corresponding color

channel ai of image I. Then, we shift the responses of the DoG filter
by a distance qi in the direction opposite to 0i. Thus the concerned
DoG filter responses, which are located at different positions meet
at the support center of the COSFIRE filter at hand. We denote by
sai ,si ,di ,qi ,0i

(x, y) the shifted response of a DoG filter that is specified by
the i-th tuple in the set Sf:

sai ,si ,di ,qi ,0i
(x, y)

def
= dai ,si ,di

(x + qi cos0i, y + qi sin0i) (3)

Fig. 5 illustrates the filtering and shifting operations of this
COSFIRE filter applied to the image in Fig. 3 (a). We skip the blurring
step of the original contour-based COSFIRE approach as we rely on
the intrinsic blurring operations of the DoGs.

3.2.2. Response of a color-blob-based COSFIRE filter
We define the response rSf

(x, y) of a color-blob-based COSFIRE fil-
ter as the weighted geometric mean of all the shifted and thresholded
DoG filter responses sai ,si ,di ,qi ,0i

(x, y) that correspond to the properties
of the blobs described by Sf:

rSf
(x, y)

def
=

|Sf |∏
i=1

(
sai ,si ,di ,qi ,0i

(x, y) + 4
)yi/

∑|Sf |
i=1 yi (4)
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(b)(a) (c) (d)

Fig. 5. (a) From top to bottom: input image, its a* channel and illustration of the structure of the COSFIRE filter that is configured by the pattern in Fig. 3 (b). The dashed black
circle indicates the prototype pattern of interest. Each circle in the bottom image in (a) represents a tuple where its radius corresponds to the preferred standard deviation of a
DoG filter and its color corresponds to the preferred polarity and color dimension. For clarity reasons this figure shows only the processing of the first five tuples that are applied
to the a* color channel. (b) Tuples 2 and 3 share the responses of the same center-on DoG filter with s = 99, and tuples 4 and 5 share the responses of the same center-off DoG
filter with s = 69. (c) The DoG responses are then shifted accordingly. The shifted DoG responses have the same size as the input image but here they are shown smaller in order
to keep the figure concise. (d) Finally, the output of the COSFIRE filter (middle) is achieved by computing the weighted geometric mean of all the shifted DoG filter responses
including those coming from the L* and b* channels. For conciseness sake, the processing of the L* and b* channels (shown at the top and bottom, respectively) is represented by
the dashed arrows. The red cross marker indicates the location of the specified center point of interest. The three local maxima in the output of the COSFIRE filter correspond to
the three similar arrangements in the input image. The symbols di(x, y) and si(x, y) are short notations for dai ,si ,di

(x, y) and sai ,si ,di ,qi ,0i
(x, y), respectively. (For interpretation of the

references to color in this figure legend, the reader is referred to the web version of this article.)

where yi = exp
(

− q2
i

2h2

)
and the parameter 4 refers to a very small

value in order to avoid having zero s terms.2 In our experiments we
use a value of the standard deviation h that is computed as a function
of the maximum distance q value: h = (−q2

max/(2lnj))1/2, where
qmax = maxi∈{1...|Sf |}{qi}. We make this choice in order to achieve a
maximum value y = 1 of the weights in the center (for q = 0), and
a minimum value y = j in the periphery (for q = qmax). For the
example in Fig. 3 we use j = 0.5.

Fig. 5 shows the output of the configured color-blob-based
COSFIRE filter which is defined as the weighted geometric mean of
eleven shifted images from the responses of seven DoG filters. Note
that this filter responds at points where a pattern is present which
is identical or similar to the prototype pattern f at and around the
selected point of interest, which was used in the configuration of the
filter. In this example, the COSFIRE filter reacts strongly in a given

2 In practice we use 4 = 10−8.

point to a local pattern that contains a blue blob at the center, a pink
horizontal ellipse at the bottom and two green blobs - one at the
north west and the other at the north east - with the regions between
these blobs having higher luminance than their surroundings.

3.3. COSFIRE-based descriptors

The use of one COSFIRE filter is suitable for the localization and
recognition of one pattern of interest as shown in the example illus-
trated in Fig. 5. Various applications in computer vision involve the
recognition of many different patterns of interest. For such applica-
tions we configure a collection of such filters from a given training
set and use them to form descriptors. Below we propose two such
methods and use them according to the type of the application at
hand. We distinguish between two types of application: one with
training examples of the patterns of interest isolated (with given
bounding boxes) from the background and having the same orienta-
tion, and the other one where no bounding boxes are given and the
patterns of interest may have different orientations.
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3.3.1. Applications with isolated patterns of interest of same orientation
The idea is to configure COSFIRE filters with a set of (parts of)

prototypical examples from every class in the training set. Below we
explain how we determine such prototypical examples.

First, we compute the mean training images Īi∈{1...k} for each of
the k classes in the training set and use them to configure k COSFIRE
filters that we denote by Ci∈{1...k}. Then, we consider every COSFIRE
filter Ci and compute the responses of the involved DoG filters for
each training image in the corresponding class i. A training image in
class i is processed by the COSFIRE filter Ci that has nf tuples, which
correspond to nf contributing DoG filters. We use the responses of
these DoG filters in the positions that are defined in the correspond-
ing tuples by the polar coordinates (qj,0j) with respect to the center
of the image to form a feature vector of nf elements for each image.
Finally, we apply K-means clustering to the feature vectors generated
from all training images within the same category. The number of
clusters K is set to be the number of eigenvalues that account for 95%
of the variability in the covariance matrix of the concerned vectors.

For each resulting cluster from a class i we take the corresponding
training images and configure a COSFIRE filter by using their mean
image as a prototype. We call such filters whole-pattern-selective.
Such filters are selective for the entire pattern of interest and they
are effective when there are no occlusions. In order to account for
occlusion we configure more filters from the same mean image but
this time using only small parts. In practice, from each mean image
we randomly select parts of radius that is one fourth of the radius
of the full pattern and use them to configure COSFIRE filters to be
selective for each part. We call such filters part-selective and we only
consider those that involve more than ten tuples.

The above procedure results in a number of whole-pattern- and
part-selective COSFIRE filters configured by a representative subset
of training images in a given application.

The automatic selection of prototypical examples described
above and the configuration of whole-pattern-selective COSFIRE fil-
ters is suitable in applications where all patterns of interest in the
training set have the same orientation and they can be isolated from
the background by given bounding boxes. We use this method for
the GTSRB data set of traffic signs described in Section 4.1.

We apply all whole-pattern- and part-selective COSFIRE filters
to every image. For the whole-pattern-selective filters, we weight
their response maps by a 2D Gaussian function (with a standard
deviation that is one sixth of the width and height of the input
image) centered in the middle of the input image (as we expect
the maximum response to be roughly at the center of the image),
and use the maximum weighted response as a feature value. For the
part-selective COSFIRE filters we use a 2×2 spatial tiling and take the
maximum value of each filter in each tile. For W number of whole-
pattern-selective and P number of part-selective COSFIRE filters this
procedure results in a feature vector of W + 4P elements.

3.3.2. Applications with no bounding boxes and patterns of interest in
different orientations

On the other hand, in applications where the patterns of interest
do not come with bounding boxes and/or have different orienta-
tions (e.g the butterfly data set) we cannot compute the mean class
images and therefore we cannot use the procedure described above
to determine a representative subset of prototypes. In such appli-
cations, depending on how large the training set is, we propose to
use either a random subset or the full set of training images as our
prototypes. Since in such applications we have no information about
the location of the patterns of interest it is not possible to con-
figure whole-pattern-selective COSFIRE filters. We only configure a
number of part-selective COSFIRE filters with local patterns selected
randomly from training images. If a COSFIRE filter does not result
in more than ten tuples then we ignore it as its selectivity would
be very low. The number of filters and the size of the local patterns

Fig. 6. Some examples taken from the GTSRB data set.

are parameters given by the user or determined empirically on the
training set.

As to the descriptor, since we have no information about the
orientations of the patterns of interest, spatial tiling is not suitable.
We only take the maximum response of each part-selective filter
irrespective of its position. For P number of part-selective COSFIRE
filters an image is represented by a P-element feature vector.

4. Experiments

4.1. Traffic sign recognition

Many traffic related applications such as Driver Assistance
Systems (DAS) [52], and self-driving cars [53] require a traffic sign
recognition system which provides valuable information to drivers
or to the automated driving systems.

We use the GTSRB3 [54] benchmark data set of German traffic
signs to evaluate the proposed approach. The data set consists of
39209 training and 12630 test images of complex scenes along with
the ground truth bounding boxes that surround the involved traffic
signs as well as the ground truth labels. There are 43 categories of
traffic signs and they are represented in an unbalanced way. The sizes
of the images vary from 15 × 15 to 250 × 250 pixels. Fig. 6 illustrates
some examples from this data set. The pictures are taken by a camera
that is mounted on a car while driving around. The captured traffic
sign images contain various challenging problems, including blurring
effects due to the motion of the car, tilting, changes in brightness due
to different weather conditions, very small size of a traffic sign in an
image, and occlusion.

Similar to other methods [55,56], we use the bounding boxes,
which are given with the data set, to crop the traffic signs and resize
them to 50 × 50 pixels. Then we convert all these cropped images to
the L*a*b* color space and apply gamma correction to the luminance
channel with c = 0.4 in order to enhance dark images4.

4.1.1. Results
We start by configuring COSFIRE filters5 using the procedure

described in Section 3.3.1. Since for this application the traffic
signs come with the ground truth bounding boxes and they are
resized to the same scale and given in the same upright ori-
entation, we configure whole-selective COSFIRE filters and use
spatial tiling for part-selective filters. The configuration results in
292 whole-pattern-selective and 1110 part-selective COSFIRE fil-
ters. We form feature vectors of length (292 + 4 × 1110 =)
4732 elements for the 39209 training images. Due to the selec-
tivity of the filters, the resulting distributions of each of the 4732
features are skewed toward low values. We therefore log trans-
form the feature vectors in order to make the distributions more

3 http://benchmark.ini.rub.de/?section=gtsrb.
4 The value of c is experimentally chosen by using the training data set.
5 We use s ∈

{
25+0.3i

50 | i = 0 . . . 16
}
.

http://benchmark.ini.rub.de/?section=gtsrb
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Fig. 7. Illustration of the configuration of COSFIRE filters and how they are used to form feature vectors to train an SVM classifier. (a) Clusters of images within one class of
traffic signs. (b) Mean images of the identified sub groups of one class of traffic signs. (c) The reconstruction of a set of m COSFIRE filters that are configured by the mean images
determined from all groups of traffic signs. Every mean image is used to configure at most six COSFIRE filters; one that is selective for the whole pattern and at most five that are
selective for randomly chosen parts. (d) Every image is processed (indicated by the ‘+’ markers) by all m COSFIRE filters. The response images of part-selective filters are divided
into four (2 × 2) spatial tiles and the maximum response in each tile is used as a feature value vi . For the whole-pattern-selective filters the weighted (by a Gaussian function)
maximum is used as a feature value. (e) Feature vectors of training images are used to train (f) a 43-class SVM classifier.

Table 1
Comparison of our results on the GTSRB data set to those of human observers and to those of other methods. Results are reported for the full test set and also for each of the six
groups as defined in other studies. For the computational methods, the top two results for each category are marked in bold face.

Method All signs Speed limits Other prohibitions Derestriction Mandatory Danger Unique

Multi-column deep NN [55] 99.46 99.47 99.93 99.72 99.89 99.07 99.22
Proposed method 98.94 99.09 99.93 93.33 99.72 97.78 99.80
Human performance [58] 98.84 97.63 99.93 98.89 99.72 98.67 100
Multi-scale CNNs [59] 98.31 98.61 99.87 94.44 97.18 98.03 98.63
Random forests [56] 96.14 95.95 99.13 87.50 99.27 92.08 98.73
LDA on HOG 2 [58] 95.68 95.37 96.80 85.83 97.18 93.73 98.63

symmetric. Finally, we use the feature vectors of all the 39209 train-
ing images to train a 43-class SVM6 (one-against-one) with a linear
kernel.

Similarly, we form the log-transformed feature vectors for the
12630 test images and present them to the SVM classifier. Fig. 7
illustrates the steps of this experiment. We achieve a recognition rate
of 98.63%. Table 1 reports the recognition rates that we achieve for
different groups of traffic signs as defined by other studies.

In order to understand better the effect of luminance and color
we perform two more experiments. First, we consider only the
luminance-based (L*) tuples and achieve a recognition rate of 98.66%.
Second, we consider only the color-based (a* and b*) tuples and
achieve a recognition rate of 77.66%. Finally, we perform another
experiment by concatenating the feature vectors resulting from
the luminance-based (L*) tuples to those resulting from all the
(L*, a* and b*) tuples of the (292 + 1110 =) 1402 COSFIRE filters, and
achieve a recognition rate of 98.94%.

The results show that while luminance based features are
more effective than color based features for the application at
hand, the addition of color information improves the results sub-
stantially. In the last experiment, the error rate is decreased by(

0.9894−0.9863
1−0.9863 =

)
22.63%. In Section 6 we discuss the design decision

of this combination of features.

4.1.2. Experiment using contour-based COSFIRE
Here we compare the proposed color-blob-based COSFIRE filters

with the original contour-based ones. We use the same prototype

6 We use the publicly available libsvm implementation [57].

images and parts of images that were used in the above mentioned
experiments, but this time converted to gray-scale, and configure
1402 contour-based COSFIRE filters7. With this approach we achieve
a recognition rate of 90.68%, which is significantly lower than that
achieved by the proposed color-blob-based COSFIRE filters.

4.2. Butterfly recognition

We perform an experiment on the butterfly data set that is
composed of seven categories with a total of 182 training and 437
test images in color [60]. Every image contains one butterfly of
varying size and orientation in a natural environment. This data set
does not come with bounding boxes that localize the butterflies in
the images. For this reason, here we use the procedure described
in Section 3.3.2. We configure8 eight part-selective COSFIRE filters
with randomly selected local patterns (of 6 pixels radius) by using
the L*a*b* color space of each training image and end up with 895
part-selective filters.

Similar to the original COSFIRE approach, the proposed filters can
achieve tolerance to rotation, scale and reflection by the automatic
manipulation of certain parameter values. We apply the configured
COSFIRE filters using rotation and scale tolerance9. We represent

7 The best parameters were tuned experimentally on the training images.
8 We use s ∈

{
25+0.3i

50 | i = 0 . . . 10
}

.
9 For rotation we use tolerance to eight orientations between −90◦ and 90◦ (in

intervals of 22.5◦) and for scale we use tolerance to six sizes that vary from a factor
2−1/2 to a multiple 21/2 (in steps of 0.6) with respect to the orientation and size of the
local prototype pattern that was used to configure the concerned filter.
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Fig. 8. (a) Configuration of a part-selective COSFIRE filter with the encircled pattern from a training butterfly image. The inset shows the structure of the resulting filter. (b)
Butterfly test images (top) and the corresponding response maps (bottom) achieved by the configured filter with rotation and scale tolerance.

an image with a 895-element feature vector where the elements
are the log-transformed maximum responses of the 895 filters to
the given image. Fig. 8 shows an example of the configuration
and application of one COSFIRE filter with rotation and scale toler-
ance.

We achieve a recognition rate of 89.02%. When we apply the
filters with only the luminance-based tuples we achieve a recog-
nition rate of 82.83%, and by using only the color-based tuples
(a* and b*) we achieve 66.36%. By concatenating the feature vectors
generated by the filters using all tuples to those of the same filters
but using only the luminance-based tuples we achieve a recognition
rate of 88.78%. Table 2 reports the recognition rates that we achieve
for different categories of butterflies and Table 3 shows the confusion
matrix of our method on the seven categories for the test set.

5. Discussion

The results that we achieve on the GTSRB data set are slightly
better than those of human observers and rank second among all
methods applied to this data set. The method that achieves better
results is a multi-column deep neural network (NN) [55], which uses
extensive preprocessing and sophisticated learning and classifica-
tion techniques. We only use gamma correction as a preprocessing
step and a basic SVM with a linear kernel. Our contribution is not
in the sophistication of the preprocessing and/or classifier, but in

the simplicity, yet highly effective, feature detectors, which can be
configured by single training examples.

The fact that several traffic sign categories have the same color
arrangement (e.g. speed limit signs have the same red circular
boundary), color information by itself is not sufficiently effective to
discriminate such traffic signs. Hence, it is no surprise that with
only color information we achieve lower performance than when we
consider only luminance information. This is also in line with the
findings of [59]. In order to give more importance to luminance we
concatenate vectors coming from L*-tuples only with vectors coming
from all tuples. This type of description led to the best results for the
GTSRB data set.

The trainable character of a COSFIRE filter makes the proposed
approach applicable to any other object classification problem. In
fact, the experiments on the butterfly data set demonstrate this
versatility. The result of 89.02% that we obtain for the butterfly
data set is comparable to the recognition rate of 90.61% reported
in [61]. In practice, our method recognizes seven butterflies less
(out of 437) than the referred method. To our knowledge, the latter
result is the best ever reported in the literature and it was obtained
by a method that relies on a learning step to determine the class
probabilities of the involved features. Notable is the fact that our
result is achieved without such a learning step and with no fine
tuning. For instance, we do not analyze the randomly selected local
patterns that we use to configure filters. Some patterns may be
selected from the background (rather than from the butterflies) and

Table 2
Comparison of our results to other methods for the butterfly data set. Results are reported for the full test set and also for each of the seven groups as defined in other studies. The
top two results for each category are marked in bold face. Number of correctly classified samples for each category are marked in bold face.

Method All butterflies Admiral Swallowtail Machaon Monarch 1 Monarch 2 Peacock Zebra

[61] 90.61 92.9 100 91.2 85.4 81.0 95.4 89.2
[60] 90.4 87.1 75.0 96.5 72.9 91.4 100 89.2
[62] 89.4 91 81 95 67 84 98 92
Ours 89.02 95.29 93.75 85.96 77.08 84.48 93.51 87.69
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Table 3
Confusion matrix of the proposed method obtained from the butterfly test set. Number of correctly classified samples for each category are marked in bold face.

Predictions

Classes Admiral Swallowtail Machaon Monarch 1 Monarch 2 Peacock Zebra Recall (%)

Ground truth Admiral 81 0 1 2 1 0 0 95.3
Swallowtail 0 15 1 0 0 0 0 93.8
Machaon 0 5 49 0 2 1 0 86.0
Monarch 1 0 0 5 37 1 5 0 77.1
Monarch 2 2 0 2 2 49 3 0 84.5
Peacock 1 1 2 1 1 101 1 93.5
Zebra 1 2 3 1 1 0 57 87.7

Precision (%) 92.3 65.2 77.8 86.0 89.1 91.8 98.3

therefore they do not carry any discriminative power. In future,
we will investigate learning techniques, such as GMLVQ [63], to
determine the most effective COSFIRE filters for a given applica-
tion and to determine the corresponding class probabilities of their
relevances.

In the experiments we chose parameter values empirically on
a small validation set and used the same values for both appli-
cations (except those related with scale). Therefore, fine tuning of
those parameter values is not necessary. The value of the threshold
parameter t1 determines the minimum accepted strength of the DoG
filter responses to the detected blobs. The set of s values used during
configuration stage is important for selectivity of blob sizes, which
are defined on a logarithmic scale in the experiments. A COSFIRE is
sensitive to the general surface structure of an object when large
values of s are used. It becomes sensitive to details with smaller
s values. The s values of DoGs can be adjusted according to the
application.

The discrimination ability of a COSFIRE filter depends on the
number of tuples used. The more tuples such a filter has the more
selective it becomes. In order to avoid filters with limited discrimina-
tion ability, we discard any filters that are configured with less than
10 tuples, a value which was found empirically on a validation set.

The configuration of a COSFIRE filter requires only one proto-
type example. This is very useful especially in applications where
there are few training examples. Moreover, the selectivity of a
COSFIRE filter can be easily interpretable. For instance, in Fig. 9
we illustrate the structure of a color-blob-based COSFIRE filter that
was configured with the iconic painting of Marilyn Monroe. Such
a reconstruction gives a clear indication of what the selectivity of
the filter is. This filter gives high responses to both the original
painting and to the one with diffuse region boundaries shown in
Fig. 2b.

Fig. 9. The structure of a color-blob-based COSFIRE filter that is configured by the
image in Fig. 2b.

The application of the proposed COSFIRE filters is highly paral-
lelizable as the computations of the DoG filter responses that are
used as input are independent of each other. In our experiments,
however, we used a sequential Matlab implementation on a note-
book with an Intel i7-2630QM 2.00 GHz CPU. For a given application
the configured set of color-blob-based COSFIRE filters take input
from the same DoG filter bank for each color channel. For instance,
for the GTSRB data set we used a bank of 34 DoG filters (17 center-on
and 17 center-off) and 3 color channels. Therefore, irrespective of the
number of color-blob-based COSFIRE filters the worst case scenario
was to convolve a 50×50 pixel image with (34×3 =) 102 DoG filters.
In practice, the application of an average color-blob-based COSFIRE
filter with 33 tuples to a traffic sign image takes 0.07 s, while the
computation of the descriptor with (292+1110 =) 1402 filters takes
17.64 s. The computational time, therefore, does not increase linearly
with the number of filters. In future, we will implement the proposed
method in a parallel algorithm, which we expect to become suitable
for real-time applications.

The COSFIRE filters that we propose differ from the original
COSFIRE approach in three aspects. First, besides shape it includes
color information by analyzing all channels in a given color space.
Second, we use an iterative configuration procedure, which ensures
that all regions with significant color or luminance information are
included in the filter. This is in contrast to the discretized configu-
ration step of the original COSFIRE approach, which is based on a
given number of concentric circles. Third, it uses blob detectors as
afferent inputs, rather than orientation-selective filters. Blob detec-
tors are more suitable for objects built from homogeneous parts and
for objects with diffuse boundaries.

The proposed COSFIRE filters can also be used to locate (detect)
objects of interest in an image. This is demonstrated in Fig. 5 (d). In
future, we will perform quantitative analysis of this aspect on the
same GTSRB data set and other suitable ones.

6. Conclusions

We present a novel approach that combines luminance, color
and spatial arrangement information in trainable COSFIRE filters.
We use their responses to form feature vectors whose effectiveness
for object recognition is demonstrated on the challenging GTSRB
traffic sign and butterfly data sets. For the GTSRB data set we
achieve a recognition rate of 98.94%, which is slightly higher than
human performance and for the butterfly data set we achieve
89.02%.

In contrast to most object recognition methods that rely on
contour-defined features obtained by edge detection or segmenta-
tion our method is robust to diffuse region boundaries and exploits
also region color information.

COSFIRE filters are trainable, in that they do not require domain
knowledge, but they are automatically configured by any given
single prototype image. Thus, they are suitable to various object
recognition problems.
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