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a b s t r a c t 

Generalizability of algorithms for binary cancer vs. no cancer classification is unknown for clinically more 

significant multi-class scenarios where intermediate categories have different risk factors and treatment 

strategies. We present a system that classifies whole slide images (WSI) of breast biopsies into five di- 

agnostic categories. First, a saliency detector that uses a pipeline of four fully convolutional networks, 

trained with samples from records of pathologists’ screenings, performs multi-scale localization of di- 

agnostically relevant regions of interest in WSI. Then, a convolutional network, trained from consensus- 

derived reference samples, classifies image patches as non-proliferative or proliferative changes, atypical 

ductal hyperplasia, ductal carcinoma in situ, and invasive carcinoma. Finally, the saliency and classifica- 

tion maps are fused for pixel-wise labeling and slide-level categorization. Experiments using 240 WSI 

showed that both saliency detector and classifier networks performed better than competing algorithms, 

and the five-class slide-level accuracy of 55% was not statistically different from the predictions of 45 

pathologists. We also present example visualizations of the learned representations for breast cancer di- 

agnosis. 

© 2018 Elsevier Ltd. All rights reserved. 
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. Introduction 

Breast cancer is the most widespread form of cancer among

omen [1] . There can be many types of deviations from a healthy

issue, where some are considered benign and some are indica-

ors for cancer. The detection and categorization of these devia-

ions are not always straightforward even for experienced patholo-

ists. Histopathological image analysis promises to play an impor-

ant role in helping the pathologists by indicating potential disease

ocations and by aiding their interpretation. 

There is a large body of work on the classification of

istopathological images. Most use generic color- or texture-based
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eatures and nuclear architectural features with classifiers such as

upport vector machines (SVM) or random forests (RF) [1,2] . The

ost common scenario is to use manually cropped regions of in-

erest (ROI) that have no ambiguity regarding their diagnoses. Even

hough these approaches can provide insights about which features

re useful for classification, it is very difficult to design and tune

hem with respect to the extensive structural diversity found in

hole slide images (WSI) that are obtained by digitization of entire

lass slides [3] . In particular for breast pathology, the variations in

he tissue structure that range from non-proliferative changes to

roliferative ones such as usual ductal hyperplasia (UDH), atypi-

al ductal hyperplasia (ADH), ductal carcinoma in situ (DCIS), and

nvasive ductal carcinoma (IDC) provide challenges to both experi-

nced and novice pathologists [4] . Furthermore, subtle differences

mong these categories lead to different clinical actions, and the

ollowing treatments with different combinations of surgery, radi-

tion, and hormonal therapy make the diagnostic errors extremely

ignificant in terms of both financial and emotional consequences

4,5] . 

Unfortunately, the generalizability of the state-of-the-art image

eatures and classifiers that have been designed and evaluated for

https://doi.org/10.1016/j.patcog.2018.07.022
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Fig. 1. Overview of the proposed framework. Salient regions are detected on the 

input WSI by feed-forward processing of FCN-1. Each connected component that 

has a probability of being diagnostically relevant above a threshold is zoomed in 

and passed to FCN-2. This process is repeated four times, and the detected salient 

regions are processed by the classification CNN to obtain the likelihood maps for 

five diagnostic classes. The detection results and the classification results are fused 

to obtain the final slide-level diagnosis. 
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the more restricted, often binary, settings is currently unknown

for whole slides that contain multiple areas with different struc-

tural deviations that correspond to different levels of diagnostic

importance. Even though the final diagnosis is decided based on

the most severe one of these areas, existence of different levels

of structural anomalies in the same slide often distracts patholo-

gists as shown in eye tracking studies [6] . Thus, automatic detec-

tion of diagnostically relevant ROIs can decrease the pathologists’

workloads while also assuring that no critical region is overlooked

during diagnosis. Such solutions will also benefit computer aided

diagnosis by eliminating a significant amount of computation and

lead to efficient use of computational resources in more detailed

WSI analysis. 

In this paper, we study both the detection and the multi-

class classification of diagnostically relevant regions in whole slide

breast histopathology images using deep networks. Our main con-

tributions are threefold. First, we propose a saliency detection

framework for automatic localization of ROIs. Our method uses

four separate fully convolutional networks (FCN) trained to imitate

the actions of pathologists at different magnifications. Although

selecting the right magnification is a common goal in the litera-

ture, we go beyond that motivation, and use a data-driven feature

learning approach that exploits the recorded viewing behaviors of

pathologists where zoom actions are used to construct training

samples. These networks progressively eliminate irrelevant areas

from lower to higher magnifications, and the combined result pro-

vides a saliency map for the WSI. Second, we present another con-

volutional neural network (CNN) for the identification of five diag-

nostic categories of ductal proliferations (non-proliferative changes,

proliferative changes, ADH, DCIS, and IDC) in whole slides. We con-

sider saliency detection and classification of salient regions as two

separate but sequential applications where the proposed modular

solutions can also be used in distinct applications. Furthermore, we

fuse the outputs of ROI detection and classification steps for slide-

level diagnosis. Third, we visualize the resulting networks for bet-

ter understanding of the learned models in differentiating cancer

categories. 

An overview of the proposed approach is shown in Fig. 1 . The

rest of the paper is organized as follows. Section 2 discusses the

related work, Section 3 introduces the data set, Section 4 de-

scribes the methodology for both ROI detection and classification,

Section 5 presents the experimental results, and Section 6 summa-

rizes the conclusions. 

2. Related work 

The related literature on WSI analysis resorted to restricted

classification settings. For example, Dundar et al. [7] used multiple

instance learning for discrimination of benign cases from action-
ble (ADH+DCIS) ones by using whole slides with manually iden-

ified ROIs. Dong et al. [8] built a logistic regression (LR) classi-

er for UDH versus DCIS classification where each WSI was mod-

led with manually cut ROIs. Some approaches to WSI analysis

ave focused on efficient applications of existing methods by using

ulti-resolution [9–11] and multi-field-of-view [12] sliding win-

ows. Even though exhaustive window-based processing of WSIs

s an alternative to manually selected ROIs, tiling usually involves

rbitrary splits of the image and has the risk of distorting the con-

ext. Balazsi et al. [13] tried to overcome the effect of fixed tiling

y using color, texture and gradient histogram features extracted

rom superpixels with RF classifiers for IDC versus normal classifi-

ation. They concluded that generic features were sufficient for de-

ecting invasive carcinoma but differentiating DCIS from IDC was

till a problem. We recently introduced a multi-instance multi-

abel learning framework to study the uncertainty regarding the

orrespondence between the pathologists’ slide-level annotations

nd the candidate ROIs extracted from their viewing records for

eakly supervised learning using WSI [14] . 

As one of the rare studies on automatic ROI detection,

ahlmann et al. [15] used color histograms of square patches with

inear SVMs for classification as relevant versus irrelevant. Numer-

cal results were given only for a small set of patches. We de-

eloped a bag-of-words model using color and texture features

f image patches as well as superpixels with SVM and LR clas-

ifiers trained using samples extracted from the logs of pathol-

gists’ image screenings for ROI detection [16,17] . The results of

he proposed method are compared to the results of this model in

ection 5 . Bejnordi et al. [18] classified superpixels at three scales

ith a large set of features and RF classifiers for progressive elim-

nation of irrelevant areas, and used graph-based clustering of the

esulting superpixels with a heuristic set of rules to obtain the

OIs. However, evaluation was done on manually annotated DCIS

ases where ADH instances were excluded due to the difficulty of

he problem. 

Recent advances in computer vision have demonstrated that

eature learning approaches using deep networks can be more suc-

essful than hand-crafted features. Such approaches have found ap-

lications in histopathology as well. For example, Cruz-Roa et al.

19] showed that a three-layer convolutional neural network (CNN)

hat operated on 100 × 100 pixel patches at 2.5 × magnification

as more successful than color, texture, and graph-based features

ith an RF classifier in the detection of IDC. Litjens et al. [20] used

 deep network with 128 × 128 pixel patches at 5 × magnifica-

ion for the delineation of prostate cancer. Janowczyk and Mad-

bhushi [3] illustrated the use of deep learning for several tasks

ncluding IDC detection using 32 × 32 pixel patches at 2.5 × mag-

ification. CNN-based cell features were also shown to improve

he accuracy of graph hashing for histopathology image classi-

cation and retrieval in [21] . Other popular applications where

eep learning methods achieved the top scores in competitions in-

lude mitosis detection [3] and metastatic breast cancer detection

n lymph nodes [20,22] . The common characteristics that lead to

he success of deep learning in these applications are the suit-

bility of finding an appropriate magnification at which the ob-

ect of interest and the relevant context can be fit within a fixed

ize patch and the availability of millions of training examples. The

arge amount of variation in the sizes of the structures of interest

nd the lack of large amount of labeled data for the multi-class

cenario that considers both pre-invasive and invasive stages of

reast cancer presents outstanding challenges to both traditional

nd deep learning-based approaches. 

Besides this work, the only other deep learning study that con-

idered this challenging range of histologic categories reflecting the

ctual clinical practice is [23] that proposed a novel structural fea-

ure for breast pathology. First, a multi-resolution network with
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Table 1 

Distribution of diagnostic classes among the 180 training 

and 60 test slides. 

Class Training Test 

Non-proliferative changes only (NP) 8 5 

Proliferative changes (P) 50 13 

Atypical ductal hyperplasia (ADH) 50 16 

Ductal carcinoma in situ (DCIS) 55 21 

Invasive ductal carcinoma (IDC) 17 5 
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wo multi-path encoder-decoders and input-aware encoding blocks

as used for pixel-based segmentation of ROIs into eight tissue

ypes [24] . Then, superpixels were used as the structural elements

hat aggregated the pixel labels, and the connected components

f the sections marked as epithelium, secretion and necrosis were

sed to estimate the locations of ducts. Finally, the structural fea-

ure was extracted by computing histograms of these tissue types

ithin several layers, defined 1-superpixel thick, towards both the

nside and the outside of these ductal components. The structure

eature was used to classify each ROI by using a four-class SVM

benign, ADH, DCIS and invasive) and by using a sequence of bi-

ary SVMs that eliminate one diagnosis at a time (invasive vs. not-

nvasive, ADH and DCIS vs. benign, and DCIS vs. ADH). The results

f that method are also discussed in Section 5 . 

. Data set 

We used 240 digital breast histopathology images that were

ollected as part of NIH-sponsored projects [4,25,26] . The haema-

oxylin and eosin (H&E) stained slides were selected from registries

ssociated with the Breast Cancer Surveillance Consortium by us-

ng a random stratified method to include the full range of diag-

ostic categories from benign to cancer and to represent a typi-

al pathology lab setting. Each slide that belonged to an indepen-

ent case from a different patient was scanned at 40 × magnifica-

ion, resulting in an average image size of 10 0,0 0 0 × 64,0 0 0 pixels.

he slides were divided into training and test sets, with 180 and

0 cases, respectively, by using stratified sampling based on age,

reast density, original diagnosis, and experts’ difficulty rating of

he case so that both sets had the same class frequency distribu-

ion with cases from different patients. The distribution of classes

s given in Table 1 . ADH and DCIS cases were intentionally over-

ampled to gain statistical precision in the estimation of interpre-

ive concordance for these diagnoses [25] . 

Three experienced pathologists who are internationally recog-

ized in diagnostic breast pathology evaluated every slide both in-

ependently and in consensus meetings. The results of these meet-

ngs were accepted as the reference diagnosis for each slide includ-

ng non-proliferative changes (including fibroadenoma), prolifera-

ive changes (including intraductal papilloma without atypia, usual

uctal hyperplasia, columnar cell hyperplasia, sclerosing adenosis,

omplex sclerosing lesion, and flat epithelial atypia), atypical duc-

al hyperplasia (including intraductal papilloma with atypia), duc-

al carcinoma in situ, and invasive ductal carcinoma. Each slide in

he test set also has independent interpretations from 45 other

athologists. The difficulty of the multi-class problem studied here

an be observed from the evaluation in [4,26] where the individual

athologists’ concordance rates compared with the reference diag-

oses were 82% for the union of NP and P, 43% for ADH, 79% for

CIS, and 93% for IDC. 

The data collection also involved tracking the experienced

athologists’ actions while they were interpreting the slides us-

ng a web-based software tool for multi-resolution browsing of

SI data. In addition, the pathologists also marked an example

OI as a representative for the most severe diagnosis that was ob-
erved during their examination of each slide. Both these consen-

us ROIs and the individual viewing records of the three patholo-

ists are used in the following sections. The diagnoses assigned by

he other 45 pathologists are also used for comparison. The study

as approved by the institutional review boards at Bilkent Univer-

ity, University of Washington, and University of Vermont. 

. Methodology 

.1. ROI detection 

In this section, first, we describe how the training data were

onstructed from the tracking records of pathologists for building

ully convolutional networks (FCN) for detection of ROIs in arbitrar-

ly sized images. Then, we present the pipeline of four FCNs that

rocess large images at different magnifications where areas eval-

ated as non-salient are incrementally eliminated from lower to

igher resolutions. This step uses FCNs because they can take ar-

itrary sized inputs and can generate similar sized predictions that

re suitable for detection and segmentation problems [27] . FCNs

rovide efficiency during both learning via end-to-end backprop-

gation and prediction via dense feedforward computation that is

ore advantageous over sliding window-based processing that in-

olves redundant computation because of overlapping regions. 

.1.1. Data set preparation 

The online software designed for the pathologists’ interpreta-

ion of WSI supported pyramid structures with the original 40 ×
agnification as well as layers successively subsampled by a factor

f 2 up to 0.625 × . The software also provided intermediate res-

lutions by on-the-fly subsampling from the closest higher mag-

ification. The tracking procedure recorded the coordinates of the

indows corresponding to the parts of the WSI visible on the

creen and mouse events at a frequency of four entries per sec-

nd. Each of these log entries is named a viewport, and the se-

uence of viewports from a particular pathologist’s interpretation

f a particular slide is denoted as l t , t = 1 , 2 , . . . , T in the analysis

elow. Motivated by the visual search patterns of the pathologists

28] , we designed a selection process that evaluated the possibility

f pairs of windows, ( l j , l i ), as being related during the pathologist’s

isual screening. In this process, the following rules were defined

o assess whether a visited window (named the destination, l j ) was

onsidered as salient by the pathologist at one of the earlier win-

ows (named the source, l i ): 

 < j, (1) 

oom (l i ) < zoom (l k ) , ∀ k ∈ { i + 1 , . . . , j} , (2) 

oom (l j ) / 3 ≤ zoom (l i ) ≤ zoom (l j ) / 1 . 5 . (3) 

The first rule stated that the source window l i must be visited

efore the destination l j . The second rule ensured that the destina-

ion window was viewed at a higher magnification than the source

indow, and there was no zoom out action going to a lower mag-

ification than the zoom level of the source window between the

wo windows. The third rule required that the zoom level of the

ource window was in a particular range so that there was suffi-

ient context around the destination in which it was considered

alient (e.g., when the zoom level of the destination l j was 30,

he zoom level of the source must be in the range [10,20]). Each

iewport in our data set was evaluated as a potential destination,

nd if one or more sources that satisfied (1) –(3) were found, the

arliest one was used to form the viewport pair. An example is

iven in Fig. 2 . After evaluating all actions, the pairs that contained
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Fig. 2. Training sample generation from the viewport log of a pathologist. The x - 

axis shows the log entry index and the y -axis shows the zoom level. The blue dot 

represents an example destination window ( l j=54 ). The horizontal lines indicate the 

search range of zoom levels for a possible source window as defined in (3) . The red 

dots are eliminated according to this rule. The yellow dots violate (2) . The green 

dots satisfy all three conditions, and the earliest one ( l i =47 ), marked with a blue 

ring, is selected as the source window. (For interpretation of the references to color 

in this figure legend, the reader is referred to the web version of this article.) 

Fig. 3. Training sample generation from the viewport logs (cont.). Grouped view- 

ports are shown with the same color where the filled dots are the source windows 

and the dots with rings represent the destination windows. A data sample is illus- 

trated for the red group where the source window ( l i =47 ) defines the input image 

data within the WSI, and the union of destination windows ( l j=54 , ... , 67 ) are used to 

construct the saliency label mask. The four ranges of zoom levels that are consid- 

ered for training four different FCNs are also shown: FCN-1 with zoom (l i ) = 1 (red), 

FCN-2 with 2 ≤ zoom ( l i ) ≤ 3 (green), FCN-3 with 4 ≤ zoom ( l i ) ≤ 6 (yellow), and FCN-4 

with 7 ≤ zoom ( l i ) ≤ 40 (blue). (For interpretation of the references to color in this 

figure legend, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Illustration of the FCN architecture for ROI detection. The number and size 

of the filters at each layer are given. All convolutional layers are followed by ReLU 

nonlinearity. We also show the corresponding image size at each layer for an input 

of m × n pixels. Note the deconvolutional layer at the end. 
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common source windows were grouped together, and each group

was used to create one data sample where the input was the raw

image corresponding to the common source window ( l i ) and the

label was a same sized pixel-level binary mask where the union

of destination windows ( l j s ) in the group were marked as positive

(salient). An example is given in Fig. 3 . 

Training samples were collected from the viewing records of

the three experienced pathologists for the 180 training images. The

resulting samples were split into four sets according to the zoom

levels of the source windows. These sets, shown in Fig. 3 , formed

the training data for four separate deep networks where each fo-

cused on specific contextual cues in a particular range of magnifi-

cations. The four training sets consisted of a total of 64,144 images

with an average size of 535 × 416 pixels. The total number of pix-

els labeled as negative was around five times as many as those that

were labeled as positive. 

4.1.2. Network architecture for detection 

Our network architecture and the related learning parameters

were influenced from the deep network presented in [29] because

of its success in the ImageNet challenge and simple strategies. Nev-

ertheless, we ensured that the sizes of the receptive fields of the
onvolutional layers were compatible with the fundamental char-

cteristics of the biopsies such as ductal structures. 

Our fully convolutional network architecture is shown in Fig. 4 .

he inputs were arbitrary sized RGB images that were collected as

n the previous section. Input images were preprocessed by sub-

racting the overall mean of RGB values of training images from

ach pixel. The image was then passed through three similar con-

olutional layers, as in [29] , where filters had a very small width

nd height (3 × 3) followed by a ReLU nonlinearity unit. Convolu-

ional stride and spatial padding was set to 1 pixel such that the

patial resolution was preserved. ReLU was followed by the max

ooling operation with a 3 × 3 pixel window and a stride of 3 after

he first layer, and a 2 × 2 window and a stride of 2 after the re-

aining layers. These three convolutional layers were followed by

nother convolutional layer with a 4 × 4 window size and a convo-

utional stride of 4. This layer included a ReLU nonlinearity but no

ax pooling operation. After that, there was one fully connected

ayer (which was, in fact, a 1 × 1 convolutional layer in FCN) fol-

owed by a dropout operation with a rate of 0.5. The network con-

inued with a deconvolutional layer with an upsample rate of 16

imes and cropping of 32 pixels from all sides. Number of filters in

ll layers were 32, 32, 64, 128, 2, respectively. The final layer was

onnected to the ‘multinomial logistic loss’ (softmax log loss) ob-

ective function layer while training, but after training, we removed

hat layer and added a ‘softmax’ layer to estimate class (relevant

ersus irrelevant) probabilities. The hyper-parameters of the net-

ork architecture were tuned on one-fifth of the training set as

alidation data. Given an input image with a size of m × n pixels,

he resulting map of size m /3 × n /3 that was relative to the input

as an advantage of the fully convolutional design that improved

he precision of detection and localization of salient regions. 

.1.3. Pipeline 

We designed a pipeline that gradually eliminated diagnostically

rrelevant regions efficiently in four successive stages where the ul-

imate output was a saliency map of the input image. A given im-

ge was processed by four networks that had the same architec-

ure but were trained to handle images at different magnifications

s shown in Fig. 1 . Let � represent the input image at 40 × mag-

ification along with the constructed multi-resolution pyramid. For

OI detection, we used the 0.625 × , 1.25 × , 2.5 × , and 5 × magni-

cations, denoted as �1 , �2 , �3 , and �4 , respectively, correspond-

ng to the zoom level ranges shown in Fig. 3 . 

The analysis started with the smallest magnification, �1 , be-

ng fed to the first network FCN 1 to produce the saliency map �1 .

hen, the regions with probability of being diagnostically relevant

bove a particular threshold were fed to the second network. The

ame procedure was repeated for the remaining stages. The final

aliency map � was computed as the weighted geometric mean

30] of the thresholded outputs of four networks, � , � , � , and
1 2 3 
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Fig. 5. Illustration of the CNN architecture for ROI classification. The number and 

size of the filters at each layer are given. All convolutional layers are followed by 

ReLU nonlinearity. 
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4 , as 

= 

4 ∏ 

k =1 

�
w k / 

∑ 4 
r=1 w r 

k 
(4) 

here w k = ( 1 2 ) 
4 −k . The weighting scheme assigned larger weights

o higher magnifications as their inputs included more details. The

utput maps were computed in such a way that the pixels below

he threshold were set to the minimum value of the pixels above

he threshold as 

k (x, y ) = 

{ 

F CN k 

(
�k (x, y ) 

)
if (x, y ) ∈ �k , 

min 

(x ′ ,y ′ ) ∈ �k 

F CN k 

(
�k (x ′ , y ′ ) 

)
otherwise (5) 

here �1 was the set of all pixels in the input image ( �1 =
 (x, y ) ∈ �} ) , and �k = { (x, y ) ∈ | �k −1 | τ } for k > 1 were the sets of

ixels above the corresponding thresholds. | �k | τ denotes thresh-

lding �k adaptively such that the lowest τ percentage of the val-

es of �k were removed from the set of pixels to be processed in

he subsequent stages. This ensured that the saliency information

btained by earlier FCNs were not lost while preserving the order

f pixel values (i.e., the pixels below the threshold could not have

igher values than those above it in the geometric mean). Tuning

he parameter τ is discussed in Section 5 . Note that, all �k maps

ere scaled to the same resolution, and the geometric mean in

4) was computed pixel-wise. 

.2. ROI classification 

In this section, we describe the methodology for both patch-

evel and slide-level classification of WSIs into five diagnostic cate-

ories (NP, P, ADH, DCIS, IDC) using a convolutional neural network

CNN). 

.2.1. Data set preparation 

A single WSI often contains multiple areas with different levels

f diagnostic importance, and a small area can lead to the patholo-

ist’s finalization of the diagnosis. Our data set contained an exam-

le ROI that was marked for each WSI as a representative for the

ost severe diagnosis that was observed during the three experi-

nced pathologists’ consensus meetings. We used these consensus

OIs as the training examples for our deep network for classifica-

ion, and sampled 100 × 100 pixel patches with 50 pixel strides to

orm the training data. The 10 × magnification was used so that

he patches had sufficient context. This combination of patch size

nd magnification also allowed us to fit a reasonable number of

atches in the available GPU memory. The neighboring patches

ad 50% overlap to achieve translation invariance. The resulting

raining set consisted of 1,272,455 patches belonging to five cate-

ories. Note that, even though the number of samples seems to be

arge, many of these patches may contain irrelevant content such

s empty areas, necrosis, etc., because the consensus ROIs were

arked roughly using rectangular boundaries as shown in Fig. 10 .

e plan to integrate tissue segmentation as a pre-processing stage

o perform contextual sampling from epithelial and stromal regions

n future work. 

.2.2. Network architecture for classification 

Five-class classification was a more challenging task than binary

aliency detection; thus, a deeper network and more training data

ere required. The training set of patches contained approximately

en times as many pixels as the training set used for detection.

urthermore, the design of the network was updated with more

ayers, filters, and neurons as shown in Fig. 5 . 

The resulting network accepted 100 × 100 × 3 fixed sized inputs.

nput images were normalized by subtracting the overall mean of
he three channels. The network consisted of six convolutional lay-

rs with 3 × 3 filters, followed by three fully convolutional layers

nd a final softmax layer. Except the last layer, all layers were fol-

owed by a ReLU nonlinearity. The convolutional layers contained

 4, 6 4, 6 4, 128, 128, 256 filters in respective order, and the first,

econd, fourth, and sixth layers were followed by a 2 × 2 max pool-

ng operation with a stride of 2. The fully connected layers con-

ained 512, 512, 5 neurons, and are followed by a dropout opera-

ion with 0.5 probability. The hyper-parameters of the network ar-

hitecture were tuned on one-fifth of the training set as validation

ata. 

Our focus was the development of the complete framework,

tarting from the step that extracts training data from the raw

iewing logs of the pathologists to the steps that include the de-

ection of diagnostically relevant ROIs and the ROI-level and slide-

evel classification of whole slide images. Thus, the network archi-

ectures used in this paper were adapted from the network in [29] ,

hich has been accepted to be one of the state-of-the-art base-

ines in many domains. The overall effectiveness can be improved

y replacing the networks in Fig. 1 with other suitable architec-

ures from the literature in the future. 

.2.3. Post-processing for slide-level classification 

The network provided class probabilities for fixed sized input

atches. In order to obtain probability maps for the whole slides,

e needed to either classify patches extracted by sliding windows

r fully convolutionalize the network. We chose to implement the

atter as it enabled more efficient WSI classification that, in fact,

mplicitly implemented sliding windows with a step size of 16.

herefore, each pixel in the probability maps corresponded to a

6 × 16 pixel patch in the input space. 

The probability maps produced by the above strategy were fur-

her downsampled by a factor of seven by bilinear interpolation in

rder to smooth out the estimates and remove the noise caused

y small isolated details. The downsampled maps were then used

o determine the final classification such that every pixel voted for

he class that had the greatest probability for that pixel. Finally,

he class with the majority of the votes was selected as the final

iagnosis for the corresponding WSI. 

An alternative approach is to learn a slide-level decision fusion

odel. This has been motivated in the literature [31] for cases

n which individual patches may not be discriminative and their

redictions can be biased, whereas the learned fusion may model

heir joint appearance and correct the bias of patch-level decisions.

e implemented the method in [31] where a class histogram was

enerated by summing up all of the class probabilities assigned to

ll pixels by the patch-level classifier, and a multi-class SVM was

rained by using these histograms to produce slide-level predic-

ions. 

. Experiments 

In this section, we present the experiments for the detection

nd classification tasks as well as the visualization of the trained
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Fig. 6. ROC curves for the proposed saliency detection pipeline with different τ

values (a) and comparisons with the method of Mercan et al. in [17] and the U-Net 

architecture in [33] (b). 
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networks. The training samples for both tasks were further divided

into 80% training and 20% validation sets for estimating the hyper-

parameters and to avoid overfitting. The implementations were de-

rived from the MatConvNet library [32] with a number of signifi-

cant modifications, and ran on a system with an NVIDIA GeForce

GTX-970 GPU, Intel Xeon ES-2630 2.60 GHz CPU, and 64GB RAM. 

5.1. ROI detection 

We trained the four FCNs for 50 epochs using the training set.

For each FCN, the stochastic gradient descent algorithm was run to

optimize a total of 168,290 network parameters on mini batches

of 25 images with 0.0 0 01 learning rate, 0.0 0 05 weight decay, and

0.9 momentum. These hyper-parameters were empirically set on a

subset of the validation data. 

5.1.1. Reference data 

Detection of diagnostically relevant ROIs in WSI has not been a

well-studied task in the literature, and there is no publicly avail-

able data set that is suitable for the evaluation of this task. There-

fore, we used the viewport tracking data to generate the annota-

tions for evaluation. 

This procedure followed the same approach described in [16,17] .

Saliency of the viewports were evaluated by using the following

set of rules: 

• The pathologist zoomed into a region from the previous win-

dow and zoomed out right after. This event was named a zoom

peak, and was a local maximum in the zoom level. 
• The pathologist slowly slid the viewports while maintaining the

same zoom level. This event was named a slow panning, and

was represented by the union of the consecutive group of view-

ports with small displacement. 
• The pathologist viewed the same region for more than 2 sec-

onds. This event was named a fixation. 

More details can be found in [16,17] . These rules were applied

to all viewport logs from the three experienced pathologists, and

the union of all windows that satisfied at least one of these rules

was computed to create a binary saliency mask for each WSI in

the test set. Morphological operations were also used to remove

the outer white regions that corresponded to the slide background

outside the tissue section because the rectangular viewports of-

ten contained such regions. Examples for the saliency masks are

shown in Fig. 7 . The training and validation labels described in

Section 4.1.1 and the test labels described in this section all came

from different cases belonging to different patients. 

5.1.2. Evaluation criteria 

The output of the detection pipeline for each test WSI contains

pixel-wise probability estimates in the range [0,1]. These estimates

were compared to the reference binary saliency mask for comput-

ing pixel-based receiver operating characteristic (ROC) curves by

averaging all results from the 60 test cases. 

The resulting performance was compared with two alternative

approaches. The first one was the classification framework pro-

posed in [17] . The approach in [17] can be considered as a state-

of-the-art method that used a bag-of-words model with color and

texture features of image patches where a logistic regression classi-

fier trained on the binary saliency masks extracted from the view-

port logs of the training slides was used to produce the detection

scores. 

The second comparison used the U-Net architecture proposed

for biomedical image segmentation [33] . The U-Net network con-

sists of 23 convolutional layers where a contracting path is fol-

lowed by an expansive path. The contracting path uses the typi-

cal architecture of a convolutional network, whereas each step in
he expansive path performs convolutions on the concatenation of

he upsampled version of the previous step in the expansive path

nd the corresponding feature map from the contracting path. The

ame training data in four different sets of magnifications were

sed to train four separate networks that were combined with the

ame weighting scheme proposed in Section 4.1.3 . 

.1.3. Results and discussion 

Fig. 6 (a) shows the ROC curves for different τ values that were

sed to eliminate a certain percentage of the pixels for further pro-

essing in subsequent stages in the pipeline. The true positive rate

TPR) was considered to represent the effectiveness of the method

n identifying all diagnostically relevant ROIs, and the false pos-

tive rate (FPR) was considered a suitable metric to evaluate the

fficiency of the method to reduce the area to be processed in

he following steps as the salient regions usually occupied a rel-

tively small part of a WSI. According to Fig. 6 (a), while monotonic

mprovements on both effectiveness and efficiency were observed

ntil τ = 0 . 4 , further increase in τ corresponded to a decrease in

ccuracy. Therefore, there is an application dependent trade-off as

igher τ values continue to yield more efficiency. 

Comparative results are presented in Fig. 6 (b). The proposed

ethod attained the best area under the curve (AUC) value for

= 0 . 4 as 0.9153, whereas [17] obtained 0.9124 and the network

n [33] obtained 0.9043. We also saw that when FPR = 0 . 2 , TPR

f [17] and [33] were 0.8552 and 0.8902, respectively, while our

ethod achieved 0.8947. Similarly, in the high TPR region above

.8, our method obtained smaller FPR values compared to [17] and

33] . Only after a TPR of 0.98, [17] achieved higher TPR at the same

PR. Overall, our method achieved better effectiveness than both

17] and [33] , even though [17] used the same set of rules listed

n Section 5.1.1 for generating both training and test data whereas

ur method used a different training set. Furthermore, our method

as significantly more efficient than both [17] (with a factor of 74

imes for τ = 0 . 4 ) and [33] (with a factor of 24 times at the same

hreshold setting) by operating on lower resolutions and process-

ng only a small portion of the images at utmost 5 × magnifica-

ion in the proposed pipeline, whereas [17] processed entire slides

sing sliding windows at full 40 × magnification and [33] used a

uch larger network architecture. 

The fully convolutional network architecture used in this paper

fficiently learned to make dense predictions for per-pixel tasks as

he output was aggregated from local computations. Explicit con-

ections from early activations to later layers as in the U-Net ar-

hitecture have the potential of capturing more detailed location

nformation in the final predictions. However, the resulting net-

orks often need a trade-off for increased complexity in larger
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Fig. 7. Example saliency detection results for three WSIs. From top to bottom: 

RGB WSI, the reference saliency mask, output of the proposed approach for 

τ = 0 . 4 , output of [17] . The image sizes, from left to right, are 77,440 × 68,608, 

128,576 × 65,936, and 132,256 × 55,984, pixels, respectively, at 40 × magnification. 

Fig. 8. Details of the individual stages in the saliency detection pipeline for the 

images shown in Fig. 7 . From top to bottom: outputs of the four FCNs, �1 , �2 , �3 , 

�4 , respectively, for τ = 0 . 
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Fig. 9. Zoomed examples from Fig. 7 . From top to bottom: RGB image, the refer- 

ence saliency mask, output of the proposed approach for τ = 0 . 4 , output of [17] . 

The roughness of the saliency masks used for training and testing can be seen. The 

proposed method provides more detailed pixel-wise predictions. 

Fig. 10. Example classification result for a WSI with a consensus label of ADH. (a) 

Original image (65,936 × 128,576 pixels) with consensus ROIs marked with black 

lines. (b) Patch-level classification for five classes: NP (white), P (yellow), ADH 

(green), DCIS (blue), IDC (red). (c) Saliency detection (brighter values indicate higher 

probability). (d) Pixels (in (b)) whose labels were used in the majority voting for 

slide-level diagnosis after thresholding the saliency map. (e-i) Pixel-wise likelihood 

maps for five classes. This sample was correctly classified as ADH using the majority 

voting of the labels shown as overlay in (d). (Best viewed in color with zoom.). (For 

interpretation of the references to color in this figure legend, the reader is referred 

to the web version of this article.) 
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cale problems, such as WSI classification in this paper, via sub-

ampling to keep the filters small and the computational require-

ents reasonable [27] . 

Figs. 7–9 present example detection results. Both the full WSI

utput and the zoomed results showed that the proposed method

roduced detailed and more precise localization of the relevant re-

ions whereas [17] produced more blurry results because of the

indowing effects. 

.2. ROI classification 

The CNN used for classification was trained for 50 epochs to

ptimize a total of 5,576,581 network parameters on mini batches

f 256 patches with 0.01 learning rate, 0.0 0 05 weight decay, and

.9 momentum. These hyper-parameters were empirically set on a

ubset of the validation data. In order to evaluate the effectiveness

f the trained network, we performed experiments for two tasks:

lassification of 100 × 100 pixel patches and classification of indi-

idual WSIs. 
.2.1. Reference data 

The consensus labels assigned by the three experienced pathol-

gists were used as the slide-level reference data. We also used

he individual diagnoses provided by the 45 other pathologists on

he 60 test cases for comparison. These diagnoses were originally

ollected for evaluation of the differences between glass slides and

igital slides. Therefore, 23 pathologists labeled the same cases by

ooking at the glass slides, and 22 evaluated the digital slides in

SI format. 
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Table 2 

Confusion matrix for patch-level classification. 

Predicted TPR & 

NP P ADH DCIS IDC Recall 

NP 2477 945 725 2027 4227 0.2382 

P 503 7246 3364 7823 3275 0.3262 

True ADH 4092 9249 5727 10,572 4511 0.1677 

DCIS 5003 23,074 7068 47,412 9550 0.5147 

IDC 661 9145 509 21,491 18,978 0.3737 

FPR 0.0515 0.2263 0.0665 0.3566 0.1357 

Precision 0.1945 0.1459 0.3293 0.5308 0.4681 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3 

Confusion matrix for slide-level classification. 

Predicted TPR & 

NP P ADH DCIS IDC Recall 

True NP 0 2 0 1 2 0 

P 0 9 2 2 0 0.6923 

ADH 0 4 4 8 0 0.2500 

DCIS 0 2 0 17 2 0.8095 

IDC 0 0 0 2 3 0.60 0 0 

FPR 0.0 0 0 0 0.1702 0.0455 0.3333 0.0727 

Precision – 0.5294 0.6667 0.5667 0.4286 

Fig. 11. Class-specific precision versus recall for the proposed method (square), the 

SVM baseline (diamond), the RF baseline (circle), and the 45 pathologists (dot). Col- 

ors represent: NP (gray), P (yellow), ADH (green), DCIS (blue), IDC (red). The vari- 

ability in the pathologists’ predictions, with a very wide range of concordance rates 

compared with the reference diagnoses particularly for the P, ADH, and DCIS cat- 

egories, is consistent with the medical literature where inter-rater agreement has 

always been a known challenge [4,26] . (For interpretation of the references to color 

in this figure legend, the reader is referred to the web version of this article.) 
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For the patch classification task, 209,654 patches with

100 × 100 pixels were sampled from the consensus ROIs of the test

cases. Each patch was labeled with the consensus label of the cor-

responding WSI. However, since the consensus ROIs were roughly

drawn as rectangular shapes, some of these patches may contain

irrelevant content as in the case of training data generation. The

training and validation data described in Section 4.2.1 and the test

data described in this section all came from different cases belong-

ing to different patients. 

5.2.2. Results and discussion 

Patch classification. The accuracy of the CNN for classification of

the test patches into five categories was 39.04%. The resulting con-

fusion matrix is shown in Table 2 . The errors seemed mostly as

underestimations of diagnostic classes as the lower triangle of the

confusion matrix added up to 63.21% of the wrong classifications.

However, visual inspection of the patches showed that some of

them were actually not errors because the whole consensus ROIs

were labeled with the same diagnosis without a precise delin-

eation of the ductal regions, and not all patches sampled from

these ROIs contained the same level of structural cues that rep-

resented the given label. For example, a patch that was sampled

from an ROI labeled as ADH could easily contain usual hyperpla-

sia or even stromal regions. Compared to the binary classification

tasks of invasive cancer, mitosis, metastasis, etc., detection that

have been widely studied in the literature, the labeling of ductal

proliferations and hyperplastic changes was a more difficult prob-

lem with a higher uncertainty. The fusion of ROI detection and

patch classification will recover some of these errors in the next

section. 

WSI classification. The classification of a WSI by using the fully

convolutionalized CNN produced probability maps containing the

five-class likelihoods as well as a label map indicating the winning

class for each pixel. The class with the highest overall frequency

in the whole image (i.e., the majority voting approach described in

Section 4.2.3 ) can be used as the slide-level diagnosis. For robust-

ness to the uncertainty in the output of the patch-based classifier

due to the roughness of the consensus ROIs and the correspond-

ing training samples, we also used the saliency map for each WSI,

and applied an adaptive threshold so that only the top 15% of the

salient pixels remained, where the final slide-level class prediction

was obtained for the WSI by using majority voting only among the

class labels of the pixels that achieved the highest (top 15%) prob-

ability of being salient. The threshold percentage was selected by

using the validation data. Fig. 10 shows an example classification.

More examples can be found in [34] . 

We also used the learned decision fusion model by training

two separate multi-class SVM classifiers by using the class his-

tograms of the pixels (i.e., the learned fusion approach described

in Section 4.2.3 ) without and with selection by the saliency de-

tection pipeline. The same thresholding protocol was used during

selection. 
Quantitative evaluation was performed by comparing the final

lide-level predictions with the consensus labels and the predic-

ions of the 45 pathologists. We also trained multi-class SVM and

F classifiers with state-of-the-art hand-crafted features including

92-bin Lab histograms (64 bins per channel), 128-bin local bi-

ary pattern (LBP) histograms (64 bins for each of the H and E

hannels estimated via color deconvolution), and 50 nuclear archi-

ectural features (as in [12] ) with different f eature combinations.

oth the SVM and the RF classifiers are popular non-deep learning

ethods for histopathological image classification, and were used

s representative baselines in our experiments. The features were

omputed within 3,600 × 3,600 pixel windows at the highest 40 ×
agnification where the window size was decided based on the

bservations in [17] . Sliding windows that were inside the consen-

us ROIs of the training set were used to build the SVM with a lin-

ar kernel and the RF classifier where the cost parameter for the

VM and the number of trees and tree depths for the RF were ob-

ained by using cross-validation. The resulting classifiers were then

sed to label the sliding windows of the test WSIs, and the result-

ng likelihood maps were combined with the same saliency detec-

ion outputs as in our method to obtain the slide-level predictions.

Table 3 shows the confusion matrix for our method. Fig. 11

hows the class-specific precision and recall values for our method,

he best performing baselines when all features were combined
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Table 4 

Classification accuracies for the pathologists, the proposed deep learning- 

based method, and the state-of-the-art hand-crafted feature representations 

and classifiers. 

Accuracy (%) 

Average and standard deviation of 45 pathologists 65.44 ± 7.07 

Proposed method with majority voting without saliency 23.33 

Proposed method with majority voting with saliency 55.00 

Proposed method with learned fusion without saliency 38.33 

Proposed method with learned fusion with saliency 55.00 

Lab + LBP+Arch. features with SVM without saliency 28.33 

Lab + LBP+Arch. features with SVM with saliency 45.00 

Lab + LBP+Arch. features with RF without saliency 31.67 

Lab + LBP+Arch. features with RF with saliency 38.33 
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370 features), and the 45 pathologists’ predictions. Table 4 sum-

arizes all results. 

We observed that the learned fusion approach improved the re-

ults against majority voting (from 23.33% to 38.33%) when the

aliency map was not used. However, considering only the set of

ixels with the highest probability of being salient in the slide-

evel prediction resulted in the same accuracy (55%) when both

he majority voting and the learned fusion approaches were used.

he 55% classification accuracy achieved by the proposed frame-

ork was also 10% higher than the best performing hand-crafted

eature and classifier combination as seen in Table 4 . This shows

hat our saliency detection pipeline was very selective and dis-

riminative where majority voting among the most salient pix-

ls was sufficient for the slide-level diagnosis, with the additional

enefit of incrementally eliminating most of the image regions in

ower magnifications and processing only small portions of the im-

ges in higher magnifications. In particular, the average running

imes for a single whole slide test image (with an average size of

4,525 × 64,330 pixels) could be summarized as follows: saliency

etection at 0.625 × , 1.25 × , 2.5 × , and 5 × magnifications took

.50, 1.21, 2.90, and 6.97 s, respectively, for a total of 11.58 s for

he whole pipeline when the threshold for eliminating diagnosti-

ally irrelevant regions was set to τ = 0 . 4 , and classification of the

atches that contained the top 15% of the salient pixels took 55.09

econds using our Matlab-based implementation on a single core

f the CPU. 

The overall slide-level classification accuracy of 55% was also

omparable to the performances of the 45 pathologists that prac-

ice breast pathology in their daily routines. As seen from Fig. 11 ,

here were very mixed performances from the pathologists for the

, ADH, and DCIS classes. In the clinical setting, the pathologists

sually agree in their diagnoses for the NP and IDC cases because

hese are at two extremes of the continuum of histologic features.

iven the smaller amount of data used to train the networks, our

erformance for the NP and IDC classes were lower than the typ-

cal pathologist’s performance. As there is little clinical difference

n how the patients with non-proliferative (NP) and proliferative

P) benign biopsies are managed, we plan to merge the NP and

 cases as a single class named benign without atypia in future

ork. However, when the other more difficult intermediate di-

gnostic categories with different clinical significance as risk fac-

ors for future cancer and with different subsequent surveillance

nd preventive treatment options were concerned, the proposed

ethod performed better, in terms of recall, than 30 pathologists

or P, 5 pathologists for ADH, and 39 pathologists for DCIS. In terms

f precision, our method was better than 17 pathologists for P, 34

athologists for ADH, and 2 pathologists for DCIS. 

We also applied McNemar’s test [35] to compare the proposed

ethod with the pathologists. Given the predictions of our method

nd the individual pathologists’ for all 60 test cases, 45 tests were

arried out at 5% significance level, and in 32 of these tests the
ull hypothesis could not be rejected, i.e., their performances were

ot statistically significantly different than ours. Furthermore, we

erformed a z-test also at 5% significance level, and again we could

ot reject the null hypothesis, i.e., our scores belonged to the same

ormal distribution estimated from the performances of the 45

athologists. 

The overall results indicated that the fusion of saliency detec-

ion for localization of diagnostically relevant regions and the clas-

ification of these regions into five diagnostic classes using deep

etworks provided a promising solution. The alternative approach

f [23] that was tested on the same data set in four-class classi-

cation (after merging non-proliferative and proliferative changes

s a single category named benign) achieved an accuracy of 56%

hen the structure feature computed using histograms of eight

issue types within layers of superpixels both inside and around

uctal objects was used. Though not directly comparable with our

ve-class slide-level performance as that accuracy was computed

nly within the consensus ROIs of the test slides, it provided addi-

ional confirmation of the difficulty of the multi-class classification

roblem involving the full range of histologic categories. Another

mportant finding of that work was that, the structure feature that

xplicitly incorporated the highly specialized domain knowledge

nto the classification model was particularly powerful in discrim-

nating ADH cases from DCIS that have not been studied in the

ublished literature. Given the years of training and experience

hat the pathologists use to diagnose the biopsies, and the im-

ortance of objective and repeatable measures for interpreting the

issue samples under the multi-class classification scenario where

ifferent classes carry significantly different clinical consequences,

ur comparable results on this challenging data set showed the

romise of deep learning where future work with larger and more

recisely labeled data sets and additional computational resources

ill eventually be practical in a clinical setting. 

.3. Visualization 

CNNs are often criticized as black box models. Recent work on

he visualization of the inner details of CNNs can also be useful

n understanding the representations learned from pathology data.

e used the occlusion [36] and deconvolution [37] methods, with

mplementations from the FeatureVis library [38] , to visualize the

NN learned for multi-class classification. 

The occlusion method added small-sized random occluders at

ifferent locations in a patch and compared the resulting activa-

ion after each occlusion with the original one. Fig. 12 shows the

isualization results as maps of the importance of different de-

ails in example images that affected the classification of partic-

lar classes positively or negatively. For example, the first three

ows show examples of ductal regions with few layers of epithe-

ial cells around lumens. The fifth and sixth rows show examples

f atypical proliferations. The seventh and eighth rows show ex-

mples of ducts filled with epithelial cells. The tenth and eleventh

ows show examples of intertwined groups of cells with no appar-

nt ductal structure. The ninth and twelfth rows contain examples

hat were listed as misclassifications that might actually be correct

ecisions but were counted as errors because of the imprecise de-

ineation of the consensus ROIs and the difficulty of sampling from

hese large rectangular windows. Finally, the fourth row shows a

lear example of the need of the saliency detection step because

he almost empty patch confused the CNN and led to activations

or multiple classes as similar regions were included in the sample

ets for all classes. Note that, it was ignored in the final fused deci-

ion because the fully convolutional multi-scale saliency detection

ipeline eliminated such areas. 

The deconvolution method built reconstructions by projecting

he activations back to the input space so that parts of the input
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Fig. 12. Visualization of the learned representations using the occlusion method. 

Each row represents a separate example patch. From left to right: 100 × 100 pixel 

input patch, importance of local details overlaid on the input image for individual 

diagnostic classes NP, P, ADH, DCIS, and IDC. Warmer colors indicate higher impact 

of that region (either positively or negatively) for the classification of that class. 

Reference diagnoses are marked by green boxes. The predictions of our method are 

shown by red bars whose heights indicate the likelihood. (Best viewed in color with 

zoom.). (For interpretation of the references to color in this figure legend, the reader 

is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 13. Visualization of the network layers by using the deconvolution method. For 

each convolutional (CONV) and fully connected (FC) layer, the top-9 activations (as 

3 × 3 groups) for four example neurons (left) and their corresponding original input 

patches (right) are shown. The last softmax layer consists of five neurons corre- 

sponding to five classes; from left to right and top to bottom: NP, P, ADH, DCIS, 

IDC. (Best viewed in color with zoom.). 
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image that most strongly activated particular neurons were found.

Fig. 13 illustrates the top-9 responsive patches for example neu-

rons from different layers and the visualization of the contribu-

tions of their pixels. The examples showed how the lower lay-

ers captured the fundamental features such as edges and blobs,

and the higher layers developed more abstract features based on

patterns representing particular arrangements of nuclei and other

ductal structures. Future work includes more detailed evaluation

of these visualizations in a clinical perspective together with the

pathologists. 

6. Conclusions 

We presented a deep learning-based computer aided diagno-

sis system for breast histopathology. The proposed framework cov-

ered the whole workflow from an input whole slide image to

its categorization into five diagnostic classes. The first step was

saliency detection by using a pipeline of four sequential fully con-

volutional networks for multi-scale processing of the whole slide

at different magnifications for localization of diagnostically rele-
ant ROIs. Both the learning and the inference procedures imitated

he way pathologists analyze the biopsies by using the patholo-

ists’ recorded actions while they were interpreting the slides. The

econd step was a patch-based multi-class convolutional network

or diagnosis that was learned by using representative ROIs result-

ng from the consensus meetings of three experienced patholo-

ists. The final step was the fusion of the saliency detector and

he fully-convolutionalized classifier network for pixel-wise label-

ng of the whole slide, and a majority voting process to obtain the

nal slide-level diagnosis. The deep networks used for detection

nd classification performed better than competing methods that

sed hand-crafted features and statistical classifiers. The classifica-

ion network also obtained comparable results with respect to the

iagnoses provided by 45 other pathologists on the same data set.

e also presented example visualizations of the learned represen-

ations for better understanding of the features that were deter-

ined to be discriminative for breast cancer diagnosis. Given the

ovelty of the five-class classification problem that is important

or clinical applicability of computer aided diagnosis, the proposed

olutions and the presented results by using a challenging whole

lide image data set show the potential of deep learning for whole

lide breast histopathology where future work with larger data sets

ith more detailed training labels have the promise to result in

ystems that are useful to pathologists in clinical applications. 
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