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Figure 1: The proposed deep fitting approach can reconstruct high quality
texture and geometry from a single image with precise identity recovery.
The reconstructions in the figure and the rest of the paper are represented
by a vector of size 700 floating points and rendered without any special ef-
fects. We would like to highlight that the depicted texture is reconstructed
by our model and none of the features taken directly from the image.

Abstract
• In this paper, we revisit optimization-based 3D face

reconstruction under a new perspective:

• Instead of linear models, we use a GAN trained
with high-resolution UV maps as our statistical
representation of the facial texture.

• Instead of primitive cost functions used in the
literature based on low- and mid-level features
(e.g., RGB values, edges, SIFT), we propose a
novel cost function that is based on deep face
recognition network.

• We replace physical image formation stage with a
differentiable renderer to make use of first order
derivatives (i.e., gradient descent).

• This is the first time that GANs are used for
model fitting and the proposed approach shows
identity preserving high fidelity 3D reconstruc-
tions in qualitative and quantitative experiments.

Project page: https://github.com/barisgecer/ganfit

Overview of the Proposed Framework

Figure 2: A 3D face reconstruction is rendered by a differentiable renderer (shown in purple). Cost functions are mainly
formulated by means of identity features on a pretrained face recognition network (shown in gray) and they are optimized
by flowing the error all the way back to the latent parameters (ps,pe,pt,pc,pl, shown in green) with gradient descent
optimization. End-to-end differentiable architecture enables us to use computationally cheap and reliable first order
derivatives for optimization thus making it possible to employ deep networks as a statistical model and as a cost function.

Approach
• Texture GAN ( G(pt) : R512 → RH×W×C ) :

A Progressive Growing GAN [1] is trained with
10,000 high resolution textures as our texture
model.

• Differentiable Renderer : Formation of recon-
struction images are done by a differentiable ren-
derer [2] to backpropagate the cost functions

IR = R(S(ps,pe),P(G(pt)),pc,pl)

ÎR = R(S(ps, p̂e),P(G(pt)), p̂c, p̂l)

ps,pe,pt,px,pl are shape, expression, texture,
camera and lighting parameters respectively

• Cost Functions:

– Identitity Loss: Lid = 1− Fn(I0).Fn(IR)
||Fn(I0)||2||Fn(IR)||2

– Content Loss: Lcon =
∑n

j

||F j(I0)−F j(IR)||2
HFj ×WFj × CFj

– Pixel Loss: Lpix = ||I0 − IR||1
– Landmark Loss: Llan = ||M(I0)−M(IR)||2

• Model Fitting:

min
p
E(p) = λidLid+ λ̂idL̂id+ λconLcon +λpixLpix

+λlanLlan + λregReg({ps,e,pl})

• Fitting Multiple Images: ps =
∑n

i p
i
s,pt =

∑n
i p

i
t

Qualitative Results

Figure 3: Our approach is robust to occlusion (e.g., glasses), low resolution
and black-white in the photos and generalizes well with ethnicity, gender
and age. The reconstructed textures are very well at capturing high fre-
quency details of the identities; likewise, the reconstructed geometries from
3DMM are surprisingly good at identity preservation thanks to the identity
features used, e.g. crooked nose at bottom-left, dull eyes at bottom-right
and chin dimple at top-left
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Figure 4: Comparison of our qualitative results with other state-of-the-art
methods in MoFA-Test dataset. Rows 2-5 show comparison with textured
geometry and rows 6-8 compare only shapes.
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Figure 6: Results under more challenging conditions, i.e. strong illuminations, self-occlusions and facial hair. (a) Input
image, (b) Estimated fitting overlayyed including illumination estimation, (c) Overlayyed fitting without illumination, (d)
Pixel-wise intensity difference of (b) to (c), (e) Estimated shape mesh

Figure 5: Results under more challenging conditions, i.e. strong illumina-
tions, self-occlusions and facial hair. (a) Input image, (b) Estimated fitting
overlayyed including illumination estimation, (c) Overlayyed fitting with-
out illumination, (d) Pixel-wise intensity difference of (b) to (c), (e) Esti-
mated shape mesh

References
[1] Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. Progressive growing of

GANs for improved quality, stability, and variation. In ICLR, 2018.
[2] Kyle Genova, Forrester Cole, Aaron Maschinot, Aaron Sarna, Daniel Vlasic, and

William T Freeman. Unsupervised training for 3d morphable model regression. In
CVPR, 2018.

[3] Anh Tuan Tran, Tal Hassner, Iacopo Masi, and Gérard Medioni. Regressing ro-
bust and discriminative 3d morphable models with a very deep neural network.
In CVPR, 2017.

[4] Ayush Tewari, Michael Zollhöfer, Pablo Garrido, Florian Bernard, Hyeongwoo Kim,
Patrick Pérez, and Christian Theobalt. Self-supervised multi-level face model learn-
ing for monocular reconstruction at over 250 hz. 2018.

[5] Luan Tran and Xiaoming Liu. Nonlinear 3d face morphable model. In CVPR, 2018.
[6] James Booth, Epameinondas Antonakos, Stylianos Ploumpis, George Trigeorgis,

Yannis Panagakis, Stefanos Zafeiriou, et al. 3d face morphable models “in-the-wild”.
In CVPR, 2017.

Quantitative Experiments
Cooperative Indoor Outdoor

Method Mean Std. Mean Std. Mean Std.
Tran et al. [3] 1.93 0.27 2.02 0.25 1.86 0.23
Booth et al. [6] 1.82 0.29 1.85 0.22 1.63 0.16
Genova et al. [2] 1.50 0.13 1.50 0.11 1.48 0.11
Ours 0.95 0.107 0.94 0.106 0.94 0.106

Table 1: Accuracy results for the meshes on the MICC Florence Dataset us-
ing point-to-plane distance.
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Figure 6: Cosine similarity distri-
butions of rendered and real im-
ages LFW based on VGG-Face.
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Figure 7: Distribution of cosine
similarity of same/different pairs
of LFW
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