Imperial College

Abstract

- We propose a novel loss function called Max-Margin Loss that benefits from set-based information by drawing inter-class margins. It maximizes the maximum possible inter-class margin that is calculated by SVMs. It implicitly pushes all the samples towards correct side of the margin with a vector perpendicular to the hyperplane and a strength inversely proportional to the distance to the hyperplane.
- We review existing set-based DML approaches and evaluate them and their combinations together with Max-Margin Loss and Softmax LOSS
- We build a framework where such functions can operate jointly with sample-based ones and investigate the strategies to maintain set information during training

Related Work

- 1. Sample-based DML methods (e.g., Softmax, Contrastive, Triplet, LSE, Quadruplet Losses)
- 2. Set-based DML methods
 - (a) Center Loss [4]: Biased centroid estimation and Do not tolerate intra-class variation
 - (b) Magnet Loss [3] : Not combinatorial with other functions
- 3. SVM based Deep Learning [5] : Penalizes only slack variables

References

- [1] Yaniv Taigman, Ming Yang, Marc'Aurelio Ranzato, and Lior Wolf. Deepface: Closing the gap to human-level performance in face verification. In CVPR, 2014.
- Omkar M Parkhi, Andrea Vedaldi, and Andrew Zisserman. Deep face recognition. In *BMVC*, 2015.
- [3] Oren Rippel, Manohar Paluri, Piotr Dollar, and Lubomir Bourdev. Metric learning with adaptive density discrimination. *ICLR*, 2016.
- Yandong Wen, Kaipeng Zhang, Zhifeng Li, and Yu Qiao. A discriminative feature learning approach for deep face recognition. In *ECCV*, 2016.
- Yichuan Tang. Deep learning using linear support vector machines. In In ICML workshop, 2013.

Learning Deep Convolutional Embeddings for Face Representation Using Joint Sample- and Set-based Supervision

Baris Gecer, Vassileios Balntas, Tae-Kyun Kim {b.gecer, v.balntas15, tk.kim}@imperial.ac.uk

batches.

Max-Margin Loss

Figure 2: (top-left) First, good embedding is used to calculate separating hyperplanes. The loss applies to all samples by green plane is included with arrows. (bottom-left) After one update for only green plane (bottom-right) After many iteration, almost convergence.			
The loss is computed by the following formula:			
$\mathcal{L}_{M} = \lambda_{M} \sum_{i=1}^{n} \sum_{j=1}^{m} \frac{1 - \overline{\delta}(y_{i} = j)}{m - 1} e^{-\frac{\delta(y_{i} = j)(w_{j}^{T}x_{i} + b)}{ w_{j} _{2}}}$			
where separating hyperplane for <i>j</i> th class is defined as $w_j^T x + b = 0$ and $\overline{\delta}(condition)$ equals to if the condition is satisfied and -1 otherwise.			

Comparison to State-of-the-art									
Method #	#Training	#Ids	Input	Network	FT on	Accuracy	Accuracy		
	Images		Size	(#Params.)	YTF or LFW	on YTF (%)	on LFW (%)		
DeepFace [1]	4.4M	4,030	152×152	AlexNet(120M)	No	91.4	97.35		
VGG Face [2]	2.62M	2,622	224×224	VGG(138M)	Yes	97.3	98.95		
VGG Face [2]	2.62M	2,622	224×224	VGG(138M)	No	91.6	_		
$\mathcal{L}_S + \mathcal{L}_M$	0.83M	2,558	96×96	NNS1(26M)	No	92.44	96.03		

Embedding of 3 Identities

Figure 4: Softmax & Center L

Figure 6: Soft. & Max-Margin L.

Comparison of Set-based Losses

