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ABSTRACT

DETECTION AND CLASSIFICATION OF BREAST
CANCER IN WHOLE SLIDE HISTOPATHOLOGY

IMAGES USING DEEP CONVOLUTIONAL
NETWORKS

Barış Geçer

M.S. in Computer Engineering

Advisor: Selim Aksoy

July 2016

The most frequent non-skin cancer type is breast cancer which is also named

one of the most deadliest diseases where early and accurate diagnosis is critical for

recovery. Recent medical image processing researches have demonstrated promis-

ing results that may contribute to the analysis of biopsy images by enhancing

the understanding or by revealing possible unhealthy tissues during diagnosis.

However, these studies focused on well-annotated and -cropped patches, whereas

a fully automated computer-aided diagnosis (CAD) system requires whole slide

histopathology image (WSI) processing which is, in fact, enormous in size and,

therefore, difficult to process with a reasonable computational power and time.

Moreover, those whole slide biopsies consist of healthy, benign and cancerous

tissues at various stages and thus, simultaneous detection and classification of

diagnostically relevant regions are challenging.

We propose a complete CAD system for efficient localization and classification

of regions of interest (ROI) in WSI by employing state-of-the-art deep learning

techniques. The system is developed to resemble organized workflow of expert

pathologists by means of progressive zooming into details, and it consists of two

separate sequential steps: (1) detection of ROIs in WSI, (2) classification of the

detected ROIs into five diagnostic classes. The novel saliency detection approach

intends to mimic efficient search patterns of experts at multiple resolutions by

training four separate deep networks with the samples extracted from the tracking

records of pathologists’ viewing of WSIs. The detected relevant regions are fed to

the classification step that includes a deeper network that produces probability

maps for classes, followed by a post-processing step for final diagnosis.
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In the experiments with 240 WSI, the proposed saliency detection approach

outperforms a state-of-the-art method by means of both efficiency and effective-

ness, and the final classification of our complete system obtains slightly lower

accuracy than the mean of 45 pathologists’ performance. According to the Mc-

Nemar’s statistical tests, we cannot reject that the accuracies of 32 out of 45

pathologists are not different from the proposed system. At the end, we also pro-

vide visualizations of our deep model with several advanced techniques for better

understanding of the learned features and the overall information captured by

the network.

Keywords: deep learning, computer-aided diagnosis, whole-slide histopathology,

saliency detection.



ÖZET

DERİN EVRİŞİMLİ AĞLAR İLE TÜM SLAYT
HİSTOPATOLOJİSİ RESİMLERİNDE MEME KANSERİ

TESBİTİ VE SINIFLANDIRILMASI

Barış Geçer

Bilgisayar Mühendisliği, Yüksek Lisans

Tez Danışmanı: Selim Aksoy

Temmuz 2016

En ölümcül kanser tiplerinden olan meme kanseri, deri tipli olmayan kanser-

ler arasında en sık görünen ikinci kanser tipidir. Meme kanserinde erken ve

doğru teşhis tam tedavi için oldukça kritiktir. Son zamanlardaki tıbbi görüntü

işleme araştırmaları bu konuda umut vadeden sonuçlar elde etmişlerdir. Bu

sonuçların biyopsi görüntülerinin analizi sırasında daha doğru anlaşılması ve

olası sağlıksız dokuların tesbitinde fayda sağlayabileceği düşünülmektedir. An-

cak ne yazık ki, tamamen otomatik bir bilgisayar destekli teşhis için tüm slayt

histopatoloji görüntülerinin işlenmesi gerekirken, bu araştırmalar genellikle özel

olarak kesilmiş ve etiketlenmiş görüntüler üzerine olmaktadır. Bununla beraber

tüm slayt görüntülerinin boyutlarının oldukça büyük olmasından dolayı kabul

edilebilir bir işlem gücü ve zaman içerisinde işlenmesi güçleşmektedir ve farklı

bölgelerde sağlıklı veya tümör dokularını farklı aşamalarda bulunması tüm slayt

görüntülerde tümör tesbiti ve sınıflandırılmasını zorlaştırmaktadır.

Biz, ham tüm slayt görüntüsünden son teşhise kadar hızlı bir biçimde tümör

tesbiti ve sınıflandırması yapabilen ve bunu yaparken güncel derin öğrenme

tekniklerini etkili bir biçimde kullanan bir bilgisayar destekli teşhis sistemi tasar-

ladık. Bu sistem uzman patologların sistematik çalışma akışı ve aşamalı de-

taya yakınlaşma tarzından esinlenerek geliştirilmiş olup temelde iki aşamadan

oluşmaktadır: (1) teşhis için ilgili alanların tesbiti, (2) tesbit edilen alanların beş

kanser tipine sınıflandırılması. Özgün ilgili alan tesbit yaklaşımımız uzmanların

birden fazla çözünürlük seviyesinde verimli arama örüntüsünü taklit etmekte-

dir. Bunun için dört adet derin ağ patologların tüm slayt inceleme kayıtlarından

çıkartılan örneklerle eğitilmiştir. Daha sonra sadece tesbit edilen ilgili alanlar

üzerinde daha derin bir ağ ve ardıl-işleme kullanılarak her bir tüm slayt görüntüsü
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tek bir kanser tipine sınıflandırılmaktadır.

240 tüm slayt görüntüsü üzerinde yapmış olduğumuz deneylerimizde, tasar-

ladığımız ilgili alan tesbit yaklaşımımız bu sorunun çözümünde en gelişkin diğer

bir yöntemden daha verimli ve etkin çalıştığı gözlemlenmiştir. Bütün sistemin

nihai sınıflandırması ise 45 patoloğun ortalama başarısının hemen altındadır.

Ayrıca derin öğrenme öznitelikleri, farklı görselleştirme teknikleri kullanılarak

incelenmiş ve öğrenilen bilgiler görüntülenmiştir.

Anahtar sözcükler : derin öğrenme, bilgisayar destekli teşhis, tüm slayt histopa-

tolojisi, ilgili alan tesbiti.
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Chapter 1

Introduction

1.1 Motivation

The most widespread form of cancer among women is the breast cancer [3]. In

the breast tissue, there can be many different types of deviations from a healthy

structure, some being considered benign and some cancer. These deviations do

not necessarily form a continuous spectrum of changes, and their detection and

classification are not always straightforward for pathologists or CAD systems.

Although people who live in the developed world have higher survival rates [4],

patients have less chance with breast cancer in the developing countries. Medi-

cal image analysis promises to play an important role in helping experts in the

analysis of histopathology images by improving the interpretation or indicating

candidate disease locations [3]. Especially, computer aided diagnosis might be

more beneficial in developing countries which are not lucky enough to have ex-

pert clinicians.

Traditional approaches to histopathological image classification involve super-

vised learning techniques that use manually selected regions of interest with class

labels provided by pathologists. However, these methods are not directly appli-

cable to the analysis of new generation whole slide images that contain multiple

1



areas with different levels of diagnostic importance. Thus, the identification and

localization of diagnostically relevant regions of interest has emerged as an im-

portant initial step for whole slide image analysis.

Hand-crafted low- and mid-level features such as LAB, local binary patterns

or graph related features have been widely used in medical image analysis in the

past [5, 3, 6]. Although they are shown to be effective for discrimination of easier

problems such as classification of healthy versus invasive cancerous regions, the

information can be captured by those features is limited for more complicated

tasks.

Those hand-crafted features are often used to train a classifier such as support

vector machines or neural networks. Beside classifier learning, pattern classifi-

cation methods that use feature learning approaches have been demonstrated to

outperform those that use hand-crafted ones which have been studied over the

years (i.e., SIFT, SURF, HOG etc.) [7]. One such approach is convolutional

neural networks (CNNs) which were proposed by [8] for the first time in the early

’90s. They have gained particular popularity in recent years thanks to increas-

ing computational power by GPUs and availability of massive amounts of data

on-line.

CNN’s deep architecture enables to learn a hierarchy of features (i.e., flow in

the order of pixel, edge, texton, motif, part, object [9]) from a given training data.

Thanks to that hierarchy, it is successful on various computer vision tasks ranging

from optical character recognition [10] to object recognition/detection [1], from

scene labeling [11] to face recognition [12]. Besides, when the performances of

CNN is investigated on very large data sets such as ImageNet [13] and compared

to the human visual system, it is concluded that it outperforms humans at fine-

grained recognition like animal species (i.e., 120 species of dogs in ImageNet)

even in clear view [14].

Usually, after designing and training a CNN, it is limited to a particular in-

put size, which might need to be varying for many vision tasks. Some studies

suggest utilizing CNN to take arbitrary-sized inputs and generate a prediction

2



of corresponding resampled size. This kind of approach is first proposed by [15]

and extensively investigated recently [16, 17]. This is called fully convolutional

networks (FCNs) which process the whole image in one go for both feedforward

computation and learning. Thanks to its dense convolutional nature, FCNs can

be trained end-to-end efficiently and effectively which makes it suitable for detec-

tion and segmentation problems. An alternative to processing any-sized inputs

is using sliding windows that does the computation for each window with tradi-

tional CNN. FCNs are advantageous over sliding windows by means of efficiency,

since the windows contain overlapping regions that are processed multiple times

whereas FCNs do the computation for one time for each pixel without repetition.

One disadvantage of CNN is being often considered as black box, which refers

to hardness to understand of the inside prediction mechanism. While the re-

cent CNN visualization studies show interesting facts about learned features, it

might be interesting to see visualization of models learned from medical data for

both medical and computer vision communities and may assist future studies to

develop better CAD models.

1.2 Problem Definition and Our Contributions

In this thesis, we focus on both detection (localization) and classification of can-

cerous regions in whole slide breast histopathology images.

Regarding the detection task, we call diagnostically relevant regions of interest

‘salient’. Main motivations of saliency detection can be grouped in three aspects:

(1) In the literature, classification task is studied in a limited way on manually

cropped cancerous regions whereas a fully automated CAD application necessi-

tates computationally expensive whole slide image processing. ROI detection and

classifying only the detected ROIs eliminates a significant amount of redundant

computation and improves efficiency. An effective prior detection step should

help to reduce false positives of classification without missing true positives as

much as possible and improve the reliability. (2) Detection of relevant regions is
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itself an important medical application which would lessen pathologists’ workload

significantly, where most of the cases are classified as health or benign [18]. Fur-

ther, such system would also assure that no critical region is overlooked during

diagnosis. (3) Since WSIs occupy enormous amounts of disk space, it is useful to

extract regions that are more likely to be viewed in order to arrange priorities of

viewing tools or compression applications.

Classification of detected regions is another significant task where a successful

classifier would ensure a pathologist is not missing any dangerous possibility and

might assist an inexperienced one during her diagnosis. Moreover, it would be a

valuable tool in developing and underdeveloped countries without doubt.

Our contributions to address the aforementioned problems might be summa-

rized as follows:

• We propose a saliency detection system by using advanced deep learn-

ing techniques, such that the machine will be taught to imitate actions

of human pathologists for localization of diagnostically relevant regions in

WSI. Saliency detectors are trained with the data extracted from screen-

ing records of experts such that a zoom action of a pathologist is used to

construct one training sample.

• We study identification of five diagnostic categories of breast cancer in WSI

by training a CNN. The network employed for this task is deeper and the

data are greater compared to the detection part.

• For better understanding of the learned model, we visualize the resulting

networks and observe which features play critical roles in differentiation of

cancer categories.
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1.3 Organization of the Thesis

In Chapter 2, we provide an overview of the related work about detection and

classification in medical image analysis.

As background information for the upcoming chapters, basics of deep learn-

ing are explained in Chapter 3. After that, we demonstrate the state-of-the-art

visualization methods of deep networks for better understanding of the learning

process.

Chapter 4 describes the sophisticated methodology for extraction of the train-

ing set from pathologists’ viewing records. Then, the FCN architecture of choice

and the novel pipeline for efficient saliency detection in WSI are presented. Af-

ter presenting the data set preparation and CNN design for classification of five

diagnostic cancer classes, we explain the post-processing step for slide-based clas-

sification.

In Chapter 5, we provide experimental set-up, techniques used in the exper-

iments, preparation of the ground truths labels and evaluation criteria for the

detection and the classification tasks. We, then, present and discuss the perfor-

mance comparison of our method with human experts and other methods. At the

end, the visualizations of the learned features are illustrated with three different

techniques.

Finally, we draw conclusion and elaborate on future works in Chapter 6.
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Chapter 2

Related Work

There is a large body of work in the literature about medical image analysis

based on low- and mid-level features [3, 5, 19]. While some of those are imported

from fundamentals of computer vision such as texture [20], color, morphometric

[21], topology and graph-based features [22, 23, 24, 25, 26], others are designed

in accordance with clinical definition of pathologists [5] such as size and shape

related features of objects, radiometric, densitometric, chromatin-specific [19],

nuclei related features [27]. Moreover, some approaches include segmentation

of various local structures like nuclei [27, 21] or gland segmentation [28] before

extracting those features.

A significant amount of studies downgraded the problem into small patches

cropped from whole-slide biopsies by hand. Even though this method gives an

insight about which features can be useful for classification, they are not directly

generalizable when the entire slide needs to be processed. While the simplest

solution is dividing images into tiles and processing individually, this is, however,

computational expensive on high resolution whole-slide images. An alternative

method is extracting ROIs to be classified beforehand [29]. Some studies propose

more efficient solutions such as detection in multi-resolution or multi-scale to re-

duce computational cost [30, 31, 32, 33, 34]. These approaches usually begin on

a subsample of slides and increase resolution on interest regions until reaching
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sufficient confidence. This methodology attempts to mimic the analyzing pattern

of pathologists on whole-slides in a way. In particular, [34] presents more sophisti-

cated pipeline for detection and classification of DCIS by utilizing superpixels for

multi-scale progressive elimination. In contrast, [35] claims that low resolution

might cause missing some details and proposes a greedy approach that randomly

selects small patches to analyze whole-slide.

Although proposed methods are similar to our approach by means of mimicking

pathologists’ behavior that is going from lower resolutions to higher, we go beyond

in that motivation and train our classifiers by their actual tracking data in order

to detect exact interests of pathologists. Further, we consider saliency detection

and classification of salient regions as two separate but sequential application

which makes them modular and easy-to-use as distinct applications. Another

disadvantage of mentioned studies is using the same hand crafted features in

different levels of magnification which carry varied characteristics. This is handled

by data-driven feature learning at each level in our method.

In medical image analysis, saliency detection on biopsy images is relatively

unexplored problem. The studies that are dedicated to it [36, 2], contain disad-

vantages of hand-crafted features and running on a single resolution. Although

[36] presents perfect results, we suspect that results are overly optimistic since

evaluation is done on cropped patches instead of whole-slides. [2] measures the

performance on whole-slides for the same data set that we use for evaluation,

thus, in Chapter 5, we compare our results with it for saliency detection.

The use of existing hand-crafted features or designing new ones require expert

knowledge about the field. Moreover, it is common that a combination of such

feature descriptors is required to extract the most useful information in local

patches. Recent studies [7] show that, in many computer vision tasks, the classic

object detection/classification pipeline that uses hand-crafted features are less

successful than feature learning approaches (i.e., CNN, autoencoders) which does

not need expert knowledge.
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Feature learning approaches are heavily applied to medical image analysis do-

main as well. In study [37], authors compare learned features by CNN with

numerous state-of-the-art hand-crafted features in the literature at recognition of

invasive ductal carcinoma tissue regions in WSI and show that learned features

outperform hand-crafted ones. Some abilities of the deep learning are also ap-

plied to the field. For example, weak learning methods such as multi-instance

learning are employed in medical images by [38, 39] and observed slight improve-

ment. In [40], multi-scale CNN approaches [11] are adopted to be effective in

capturing both textural and abstract information for segmentation of cervical cy-

toplasm. Transfer learning is first applied by [41] that adapts features trained with

breast histopathology images to medulloblastoma tumor differentiation. Having

that features learned from breast histopathology performed better than features

learned from natural images of ImageNet data set, suggests that features with

better characteristic of the target data and the task should achieve better perfor-

mance. Fully convolutional networks are used by [42] for efficient detection after

thresholding non-salient regions. Different network architectures, which yield the

best performances in object detection challenges, are examined in medical image

analysis by [39].

Not long ago, [43] won the Camelyon Grand Challenge 2016 where it achieved

better performance than hand-crafted features and slightly lower performance

than human accuracy. Moreover, it improved human performance significantly

by combining prediction probabilities of the two. But the running time of this

approach is not scalable for a practical application for clinics as it processes WSIs

at 40X magnification.

Our study presents classification of five diagnostic classes of breast cancer

and visualization of abstract level of information captured by networks. To the

best of our knowledge, no study is done for classification of multiple classes of

cancers, most of them focus on binary classifications such as cancer vs. healthy

or detection of a class (i.e., DCIS, INV) which are relatively simpler problems.

Furthermore, other than first layer reconstructions, we did not come across with

any advanced deep learning visualization technique applied to the domain.
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Chapter 3

Background on Deep Learning

This chapter briefly outlines the basics of deep convolutional neural networks and

explains the visualization approaches used for better understanding of the learned

models.

3.1 Basics

The goal of deep learning is to build a data-driven solution to model a particu-

lar problem with sequence of layers that are developing from low-level features

(i.e., edges, T junctions) to more abstract representations (i.e., human head,

keyboard). CNN is a visual form of hierarchical networks where discriminative,

representative features are learned (not the design of the network which is hand-

crafted) for end-to-end prediction from raw pixels of the original image to final

scores. Each layer consists of a differentiable function that inputs a 3D volume to

be transformed into an output 3D volume, such as linear filters, non-linear activa-

tion functions, subsampling operators and an objective function. An optimization

algorithm, such as gradient decent, runs iteratively and updates parameters of

those functions in such a way that it takes one step (learning rate) in the direc-

tion of fastest descent of the loss and, ultimately, reaches a local optima in the
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objective function space. Although it is rare to achieve global optima, most of

local optima points are good enough and quite close to global optima. We now

explain some of the fundamental terms about CNN below:

1. Fully-connected (FC) layer: This layer, as in traditional multilayer neural

network, consists of weighted connections from all units of the preceding

layer to all units of the subsequent layer.

2. Convolutional (CONV) layer: For visual learning, it is possible to make full

neural connections from all to all, the computation time, however, would not

be scalable for proper training as the number of parameters to be trained

increases exponentially. This problem is overcome with the assumption of

that input images possess similar characteristic in any spatial position. That

is to say, for example, possibility of having a horizontal edge in the middle

of the image is the same as having it at any other position. This implies

that features learned from the middle part of the images are also useful in

any other part. Therefore, it is sensible to make local shared connections

whose weights are kept the same for every spatial position of the image.

Convolution is an operation where a kernel (or filter) slides (or is convolved)

over a vector or matrix and the dot product of corresponding local region

and weights of kernel computes the corresponding output. This operation

is widely used in image processing for detection of desired patterns and

mostly done in 2D.

Shared neural connection solution can be applied by a convolutional layer

which carries out the core function of CNN approaches. They consist of

multiple 3D convolution operations which are applied to volumes coming

from the preceding layer and produce the output volume which has the same

width and height as the input. Each convolution kernel is a volume that

has a relatively small width, height (i.e., 3, 7, 11) and depth same as input

volume. The number of kernels applied determines the depth of the output

volume where each depth column corresponds to the response of the input

volume to a filter that is selective for a particular pattern. Trough learning

algorithms, the network will learn filters and they, eventually, converge to
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discriminative features for the training data.

Although there is no right number and size for kernels, as they are design

parameters and are problem-oriented, better models can be designed with

broad experiments [1] or by visual analysis [44]. The size of the region a

kernel is operated on the original image, is dependent on kernel’s size and

place in the network, and this is called receptive field. Receptive fields

of kernels are expected to be enlarging over the layers and should be big

enough at the end to capture significant information. In order to increase

spatial tolerance and, in some cases, make the network shallower, filters can

be slid with a stride more than one which can be viewed as down-sampling

the output of convolution as well.

3. Deconvolutional layer: Deconvolution is the reverse operation of convolu-

tion which may be considered as learnable upsampling instead of being

fixed (i.e., bilinear) in a network. When it is integrated in a backpropaga-

tion algorithm, it provides end-to-end learning from dense label maps with

pixel-level precision which is useful for detection and segmentation tasks.

We refer readers to [16] for details about deconvolutional layer.

4. Non-linearity: Most of the time, the problem that is tried to be modeled

by CNN is not linearly separable. Thus, non-linearity should be introduced

to the network in order to solve such problems. In other words, without

non-linear activation functions, a network’s output would just be a linear

combination of the input. In the recent studies, it is proven that the rectified

linear unit (ReLU) (i.e., thresholding at zero f(x) = max(x, 0)) as a non-

linear activation function is the most efficient and effective compared to

other functions (i.e., tanh) [45]. In CNN architectures, a convolutional

layer is mostly followed by a non-linearity gate.

5. Max pooling layer: Max pooling is a method for taking the highest ac-

tivation unit into account in a given interest region where ignoring other

units, and therefore is a down-sampling operation which actually reduces

the number of parameters and, thus, computation time. This operation is

mostly done after convolution and non-linearity operations and gives the

network tolerance to translation of interest pattern in the input.
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6. Dropout: Overfitting is one of the most challenging and common problem

of machine learning and particularly deep learning. The dropout approach,

which is proposed by [46], deals with this problem by simply disabling

some of the units during training (i.e., 50%) randomly in each epoch and

this method is usually applied to FC layers.

7. Objective function: In other name, loss function (i.e., softmaxloss) defines

the optimal solution such that the gradient descent algorithm will update

weights toward the negative direction of its gradient and eventually con-

verges to a local optima.

8. Gradient based optimization: After initializing all weighted connections ran-

domly with zero mean and small variance, they are optimized according to

given data and the objective function with conjunction of gradient descent

and back-propagation algorithms.

First, all of or a subset of training data is fed to the network forwardly.

Then the error is estimated from the difference between the prediction and

the expected output. Secondly, all the weights in the network are updated

in the negative direction of the gradient derivative of the objective function

by calculating the derivatives with back-propagation algorithm. Since it

is cost-inefficient to run this algorithm for all the data for each update,

mostly the stochastic gradient descent (SGD) algorithm is used in practice

which divides training data into subsets and run gradient descent algorithm

for each. Although this is a greedy approximation of the gradient descent

algorithm, it converges to an adequate optima point in reasonably less time.

9. Fully-convolutional Network: Traditional single convolutional networks

with sliding windows suffer from two main problems in detec-

tion/segmentation tasks: (1) fixed input size limits possible applications

and it is not clear how sliding windows should be managed (i.e., step size),

(2) unnecessary computation of overlapping regions multiple times decreases

the efficiency drastically.

Fully convolutional networks (FCN) are generalized version of CNN which

accept any-sized inputs and produce a dense output map in respective size.
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Instead of scanning whole image with classic CNN which cause repeating

computations of coinciding regions, this approach is more efficient by means

of learning and application time, where images are processed as a whole

without redundant computation.

In order to alter a CNN to FCN, fully-connected layers should be convolu-

tionalized (as, in fact, they are convolutions where input and convolution

dimensions are equal) and objective function should be remodeled according

to new spatial output map.

3.2 Visualization

Over the years, CNNs have been considered as black box and improving a net-

work’s performance regarded as only manipulating the hyper-parameters blindly.

Recent studies enlightened this puzzle and developed novel visualization meth-

ods for better understanding of the inner units of a network. Interpretation of a

learned model is important in order to spot ways of improvement or locate the

obstacles. For some, this progress was even more exciting by means of discover-

ing that the learned features are the ones that are attempted to be designed by

hand for decades. As a result, the initial goal that is the hierarchical learning of

features in a logical flow (i.e., edge, texton, motif, part, object) was demonstrated

to be achieved more or less by CNN.

Therefore, we apply several visualization techniques to our models in order to

understand which features are important for identification and discrimination of

cancer types. Observing the information captured by our network might help to

improve it or to give intuition to design new ones in the future studies. What

is more is that discovering new features that are regarded as discriminative by

our network, might be interesting to pathologists as this might help to improve

their understanding and performance during the diagnosis which is still an open

problem. Additionally, visualization of different patterns that are diagnostically

relevant can be beneficial during the medical education.
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CNN visualization techniques can be classified into three main categories as

done by [47]:

1. Occlusion: This trivial approach is first proposed by [44] and improved by

[48]. It is all about simply considering the network as an unknown function

and measuring the influence of input pixels. The method first measures the

activation of an image for a particular class, then starts distorting the input

image within small windows by replacing each window with television noise

independently. While distorting each window, it monitors the differences in

the activation and produces a heatmap that shows how much each particular

window changes the likelihood of the class either in positive or negative

direction.

2. Deconvolution: This method is proposed by [44] and [49] at first and im-

proved by [50]. The goal is to produce the visualization of the contributions

of pixels of an image by tracking the activations during the feedforward pass

and deconvolving toward backward direction until the input.

3. Activation Maximization: [51] proposed a method to synthesize an image

that maximize the activation of a neuron. This image resembles the pat-

tern which the neuron is sensitive the most. Since this approach led to

unnatural images, [49] suggested to add a L2 norm regularization term to

optimization objective. This term encourages pixel values staying in the

rage of natural images (which is usually [0, 255] or [-128, 128]). In addi-

tion to that, [52] includes total variation regularizer which smooths out the

spikes caused by max pooling layers during the reconstruction. They also

generalized L2 norm regularization to Lp norm and use larger values of p

(i.e., p = 6) that results in better visualizations. [53] adds a non-parametric

path prior regularization on top of others, but we do not include it in our

experiments. The drawback of this approach is that balancing between the

loss and the regularization terms requires some attention, and otherwise it

leads to unrecognizable reconstructions for human observers.
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Chapter 4

Methodology

This chapter focuses on the novel methodology that we propose for detection and

classification in whole slide breast histopathology images by employing deep CNN

models. We consider these two tasks as sequential yet distinct applications.

Section 4.1 describes the proposed procedure that uses advanced deep learn-

ing techniques to mimic the actions of pathologists for the detection of regions

of interest in WSI of breast biopsies. First, training data are gathered from the

tracking records of pathologists’ viewing behavior while they were interpreting

whole slide images (Section 4.1.1). The actions that correspond to zoom events

and panning motions are identified by using a set of rules that results in candi-

date salient regions at different magnification levels. Section 4.1.2 explains how

these regions are used to train fully convolutional networks1 that are particularly

efficient for detection tasks in arbitrarily sized images. Finally, four separate

networks that model the pathologists’ screenings at different magnifications are

combined in a sequential pipeline for effective and efficient processing of large

images where areas that are found to be non-salient are incrementally eliminated

from lower to higher resolutions as shown in Section 4.1.3. The resulting proba-

bility maps quantify the diagnostic relevance of all pixels in whole slide images.

1Although these networks are also CNN, we prefer to call them FCN throughout the text in
order to avoid confusion.
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In Section 4.2, we explore the performance of the learned hierarchical features

on identification of several diagnostic breast cancer classes. We first prepare a

training set by using only the most informative regions marked by experts in

Section 4.2.1. Then, it is introduced to one deeper CNN compared to FCN

design to be trained for classification of five cancer categories. At the end, we

explain a post-processing step to obtain slide-based predictions from pixel-based

probabilities.

4.1 ROI Detection

4.1.1 Data Set Preparation

We use a data set of 240 digital breast histopathology images that are collected

as part of the digiPATH project [2]. The H&E stained biopsy slides were scanned

at 40X magnification in average size of 100,000×80,000 pixels and were labeled

by 196 pathologists where 3 of them are world-class experts in the field. Several

studies [54, 55] show the huge disagreement among those individual pathologists’

interpretations of the slides. For ease of use and efficiency, images are six times

subsampled by a factor of 2 to construct a spatial pyramid that resulted in 20X,

10X, 5X, 2.5X, 1.25X, 0.625X magnification versions of the original image and

divided into 180 training and 60 test images.

During diagnosis of high-resolution pathology images, pathologists use software

that allows zoom in/out and panning actions. The software works similar to

the web mapping applications (i.e., Google Maps) where it shifts between the

mentioned resolutions when the user changes the zoom level. If requested zoom

level is not one of the sub-sampled resolutions, then the software subsample-on-

time from the closest higher resolution. The rectangular part of the image that is

visible on the pathologist’s screen (viewport) is tracked while she navigates over

a range of magnifications and regions for diagnosis. At the end of the viewing

session, the pathologist also marks a bounding box to indicate a sample region
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Figure 4.1: Zoom levels of a cross-section of view-port logs. Extraction of a zoom
action is shown where blue dot represents the inner window’s log, horizontal
blue dashed lines indicate the range of possible outer window candidates’ zoom
level due to Equation (4.2), the red dots show logs eliminated because of this
limitation, pink dots depict logs that violate Equation (4.3). Green dots satisfy
all the conditions and the earliest one is considered as the outer window of the
zoom action extracted. Every log in the set is considered as the inner window
and this process is repeated. Best viewed in color.

for diagnosis. The view-port logs are recorded 4 times in a second and each

log includes coordinates of the visible part, the zoom level and the time stamp

information. Let us call view-port logs lt for each expert’s analysis on each image,

where t = 1, 2, . . . , T stands for time series.

A well-prepared training set is one keystone for effective training of a deep

network. In such complicated data sets, presenting the data to the network plays

a critical role; therefore, here we are mostly focused on this part. We propose

the following procedure where we are motivated to spot experts’ zoom actions.

Intuitively, we presume that every visited window is considered as salient by

the expert at some previous window. In this fashion, those windows should be

neither too close nor too far to the visited window by means of zoom level and

there should not be any zoom-out action between the two.
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First, we define a set of conditions that assure that all zoom actions are ex-

plored accurately such that an inner window appeared to be salient to the expert

when she was looking at the corresponding outer window. Then, we consider all

the log records in our set as the zoomed window (lj) and the candidate preceding

logs as their outer windows (li), and collect log pairs (lj, li) as follows:

Find smallest i such that

i < j (4.1)

zoom(lj)/3 ≤ zoom(li) ≤ zoom(lj)/1.5 (4.2)

zoom(lk) > zoom(li), ∀k ∈ {i, .., j} (4.3)

An example is illustrated in Figure 4.1 where outer window (li) of the zoomed

window lj=54 (blue dot) is being discovered. We filter out the preceding logs that

lies out of the zoom level range defined in Eq.(4.2) such as red dots. Pink dots are

eliminated for having zoom-out actions between them and lj=54 (i.e., logs with

lower zoom level such as red dots). Finally, among the remaining candidate logs

(green dots), the earliest log is chosen to be the outer window (the one surrounded

with blue).

After discovering all the zoom actions, pairs that contain common outer win-

dows (li) are grouped and each group is used to create one data sample where

the input is raw image corresponding to the common window li and the label is

a same sized binary map where the union of ljs’ windows in the group is positive

(salient). An example to this mechanism can be seen in Figure 4.2 where outer

window is shown with red dot (i.e., li=47) and the group of corresponding zoomed

windows are circled with red (i.e., lj=54...67) which are then used to construct the

label.

For every image, tracking logs of each of the three experts who are the only

ones having viewing records for all images, are processed individually by the above

algorithm and union of the all extracted samples formed the training data. Yet,

there are 4 detectors to be trained, thus the data need to be split into 4 subsets.

Since the detectors are hierarchical, the split is done according to zoom levels of

the outer windows. Therefore, we determine 4 ranges of zoom(li) values as shown
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Figure 4.2: The same cross-section as in Figure 4.1. Groups of zoom action
pairs are painted to the same color where if the color fills the blob, it is the
outer window, if the color surrounds the blob, it is one of the zoomed windows
of the group. An example of data sample construction is shown for the red
group. Ranges of data split are shown with different colors; (red): 1. detector
(1 ≤ li ≤ 1), (green): 2. detector (2 ≤ li ≤ 3), (yellow): 3. detector (4 ≤ li ≤ 6),
(blue): 4. detector (7 ≤ li ≤ 40). Best viewed in color.

in Table 4.1 and Figure 4.2 with different colors. For example, for detector 3, we

consider zoom action pairs that have li whose zoom level is lower than or equal

to 6 and higher than or equal to 4.

At the end, we form the four training sets that consist of a total of 66,144

images with 535 × 416 pixels average size. Total number of pixels labeled as

negative is around 5 times as many as those which are labeled as positive. Other

statistics of the training set concerning subsets are shown in Table 4.1.

Table 4.1: Statistical information about the training data.

Detectors
zoom(li)
ranges

Magnification
Number of
Samples

Average
Width

Average
Height

Number of
Positive Pixels

Number of
Negative Pixels

FCN-1 1-1 0.625X 40,209 564 430 77,031,781 717,253,531
FCN-2 2-3 1.25X 7,297 491 410 35,702,296 81,060,840
FCN-3 4-6 2.5X 9,125 498 392 48,828,834 92,800,606
FCN-4 7-40 5X 9,513 483 388 40,590,231 100,196,457
Total - - 66,144 535 416 202,153,142 991,311,434
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4.1.2 A Deep Architecture for Saliency Detection

Another keystone for effective feature learning is network configuration which

includes network architecture and other learning parameters (i.e., learning con-

stant, momentum). Drawing a network design from scratch is a challenging task

and requires extensive domain expertise. As discussed, we do not deeply inves-

tigate deep learning in this aspect but rather the way of applying well-studied

deep-net solutions to our unexplored problem. Therefore, for all parameter and

network choices, we draw inspiration from VGG network [1] because of its recent

success in ImageNet challenge [13] and simpler deep-net models. Nevertheless, we

assure that the sizes of the receptive fields of the CONV layers fit to fundamental

elements of biopsies such as nuclei, ducts, lumen or a particular tissue pattern as

seen in Figure 4.4.

The input of our networks are arbitrary sized (m × n) RGB images that are

collected as explained in Section 4.1.1. Input image is preprocessed by subtracting

the overall mean of RGB values of training set images from each pixel. The image

is then passed through 3 similar convolutional layers, as in [1], where filters have

a very small width and height (3 × 3) followed by a ReLU non-linearity unit.

Convolutional stride and spatial padding is set to 1 pixel such that the spatial

resolution is preserved. ReLU is followed by the max pooling operation with a

3 × 3 pixel window and a stride of 3 after the first layer and a 2 × 2 window

and a stride of 2 after other layers. This three convolutional layers are followed

by another convolutional layer with 4 × 4 window size and convolutional stride

of 4. This layer includes a ReLU non-linearity but there is no max pooling

operation. After that there is one fully connected layer (which is, in fact, a 1× 1

convolutional layer in FCN case) followed by dropout operation with 0.5 rate.

The network continues with a deconvolutional layer with upsample rate of 16

times and cropping 32 pixels from all sides. Number of filters in all layers are

32, 32, 64, 128, 2 respectively.

Size of the resulting map is relative to input size (m/3×n/3) as an advantage

of fully convolutional design which improves precision of segmentation. The final
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Figure 4.3: Designs of the Fully Convolutional Networks (FCNs). Hierarchical
visual representations are learned with the simplistic design choice which is in-
spired by [1]. All the convolution layers are followed by a ReLU normalization
layer. Note the deconvolutional layer at the end.

Figure 4.4: Receptive fields of CONV layers shown in Figure 4.3 overlaid on
0.625X(a), 1.25X(b), 2.5X(c), 5X(d) magnification images. This figure gives us
intuition about what kind of information is captured by each layer of our network.
Colors are selected according to their corresponding layer in Figure 4.3.

layer is connected to ‘softmaxlogloss’ objective function layer while training but

after training we remove that layer and add ‘softmax’ layer to estimate class prob-

abilities which are between 0 and 1. Graphical representation of this architecture

can be seen in Fig.4.3.

4.1.3 Pipeline

We propose a pipeline that gradually eliminates insignificant regions efficiently

in four successive steps where the ultimate output is a saliency map of the input

image. A given image is processed by the four networks that are trained to handle
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images from different resolutions. For example, let us call the input image with Φ

which has 40X resolution. First, the spatial pyramid of Φ is extracted where, in

fact, at this state of the framework, we only use 0.625X, 1.25X, 2.5X, 5X resolution

levels which are called Φ1, Φ2, Φ3, Φ4 respectively. We, then feedforward Φ1 to

the first network (FCN1) to produce a saliency map Θ1 where the regions above

a certain threshold are fed to the second network in two times higher resolutions

(Φ2). We repeat the same procedure a total of four times. Then we compute

the weighted geometric mean of thresholded output of four networks denoted by

Θ1,2,3,4 by the following formula:

Θ =
4∏
i=1

Θ
ωi/

∑4
i=1 ωi

i , (4.4)

where ωi = (1
2
)4−i. The output maps are thresholded in such a way that pix-

els below the threshold are set to the minimum value of the pixels above the

threshold. This is in order to not to lose the saliency information obtained by

earlier FCNs, while preserving the order of pixel values (i.e., the pixels below the

threshold cannot have higher values than those above it in the geometric mean).

The formulation of the thresholding stage is as follows:

Θi(x, y) =


FCNi(Φi(x, y)), if (x, y) ∈ Ωi

min
∀(x′,y′)∈Ωi

FCNi(Φi(x
′, y′)), otherwise

(4.5)

Ωi = {(x, y) ∈ |Θi−1|τ}, for i > 1 (4.6)

where Ωi denotes a set of pixels which is initially all the pixels in the image

(Ω1 = {(x, y) ∈ Φ}) and |.|τ denotes thresholding Θi adaptively such that lowest

τ percentage of values of Θi is removed from the set of pixels to be processed in

the subsequent steps. Tuning the parameter τ will be discussed in Chapter 5.

Note that all Θi maps are scaled to same resolution and geometric mean is done

pixel-wise.

This design is motivated to resemble the efficient search pattern of expert

pathologists where they detect diagnostically relevant ROIs at a given resolution

than zoom in to examine the region at better resolution. They repeat this pro-

cedure multiple times until they reach the ultimate regions of interest at highest
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Figure 4.5: Overview of the proposed framework. Salient regions are detected
from a WSI by feed-forward processing of FCN-1. Each connected component
above a threshold is zoomed-in on the input image and processed by FCN-2. This
process is repeated four times and the detected salient regions are processed by
the classification CNN to obtain probability maps of five diagnostic classes. Then
classifications of all salient regions are combined by post-processing to determine
final diagnosis. With this hierarchical procedure, the goals are: (1) improving
efficiency, (2) capturing information in all the same zoom levels as pathologists
perform.

resolution and as a result, they avoid superfluous efforts [56]. Similarly, with the

presented progressive procedure, we eliminate redundant computation, i.e., the

whole image would be processed in 5X resolution with 63 times more computation

compared to 0.625X resolution.

4.2 ROI Classification

4.2.1 Data Set Preparation

We will use the digiPATH data set introduced in Section 4.1.1, which is also suit-

able for classification as images are labeled into five different diagnostic categories

of breast cancer (i.e., Non-proliferative changes only (NP), Proliferative changes

(P), Atypical ductal hyperplasia (ADH), Ductal carcinoma in situ (DCIS), In-

vasive cancer (INV)). Similarly, only the same 180 images are used for training

and 60 for testing in 10X magnification by keeping class distribution ratios the
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equivalent as much as possible.

Whole slide biopsies are huge images and, thus, only a tiny part can change

the decision of a pathologist to a cancer type even though remaining part consist

of perfectly healthy tissue. Moreover, one WSI might contain multiple categories

of cancerous tissues which may confuse both medical experts and computer sys-

tems. Therefore, expert pathologists are asked to draw boundaries of the most

representative area for the most critical diagnosis found in that whole slide in

consensus meetings. We, then sample patches size of 100 × 100 pixels from the

training set where at least 80% of a patch lies within the union of those bound-

aries. Sampling is done with 50 pixel stride which means neighboring samples

contain 50× 100 or 100× 50 overlapping regions. The resulting data set consists

of 1,272,455 images distributed to five classes as shown in Table 4.2. The rea-

son why we did not fully-convolutionalize the classification CNN for the training

instead of patch extraction is that this CNN is deeper and contains more than

30 times more parameters compared to the detection FCN, therefore training

fully-convolutionalized version of classification CNN would take around 4 months

whereas training one detection FCN takes about 3 days and training the classifi-

cation CNN takes about 10 days.

Table 4.2: Distribution of the training data of classification task

Category Number of Samples Percentage
NP 86,397 6.79%
P 242,434 19.05%

ADH 92,231 7.25%
DCIS 371,385 29.19%
INV 480,008 37.72%
Total 1,272,455 100.00%

4.2.2 A Deep Architecture for Classification

Classification of five cancer categories is more challenging than saliency detection,

thus, requires deeper network design and further training data. The prepared
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Figure 4.6: Designs of the Convolutional Neural Network. The design in Figure
4.3 is extended and this one is also motivated by [1]. All the convolution layers
are followed by a ReLU normalization layer.

data set contains approximately ten times as many pixels as the training set

of the detection part. But the network design lacks an improvement in order

to discriminate multiple classes which necessitate capturing more complicated

information. Therefore, the design in Figure 4.3 is upgraded with more layers,

filters and neurons by sticking the style of [1] and regarding the base components.

The enhanced network is not a fully convolutional network and accept 100 ×
100 × 3 fixed sized inputs. Inputs are normalized by subtracting global mean

of three channels. The network consists of 6 CONV layer with 3 × 3 filter size

followed by 3 FC layer and concludes with softmaxloss layer. Except softmaxloss

layer, all layers are followed by ReLU. CONV layers possess 64, 64, 64, 128, 128,

256 amount of filters in respective order and 1st, 2nd, 4th, and 6th layers are

followed 2 × 2 max pooling operation with stride of 2. FC layers contain 512,

512 and 5 neurons (the number 5 is due to the number classes) and the first two

layers are followed by dropout operation with 0.5 probability. Size of intermediate

volumes between layers can be seen in the illustration of this design shown by

Figure 4.6 and receptive fields of CONV layers are demonstrated in Figure 4.7.

4.2.3 Post-processing for Whole Slide Classification

The above network inputs a fixed size patch and produces class probabilities

for it. In order to obtain probability maps for the whole slides, we need to
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Figure 4.7: (left): The window size that the classification network is sensitive
to, shown on a biopsy image. (right): Receptive fields of CONV layers shown in
Figure 4.6 overlaid on 10X magnification, size of 100× 100 pixels breast biopsy.
Colors are selected according to their corresponding layer in Figure 4.6.

either classify patches extracted by sliding windows, or fully-convolutionalize the

network. We do the latter as it allows more efficient WSI classification which, in

fact, implicitly implements sliding windows with step size of 16. Therefore, each

pixel of the probability maps corresponds to a 16× 16 patch in the input space.

The probability maps produced by the network are first downsampled with

bicubic interpolation in order to remove noise and regard only group of neigh-

boring pixels with high probabilities in the original scale. Downsampled maps

are then used to determine the final decision such that every pixel voted for the

class that has the greatest probability for the pixel. Finally, the class with the

majority of the votes is elected as the final prediction for the corresponding WSI.
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Chapter 5

Experiments and Results

This chapter presents the experiments performed for both detection (Section 5.1)

and classification tasks (Section 5.2). At the end of the chapter, we apply several

visualization techniques in order to understand the visual information captured

by our CNN network.

For both tasks, the data set is divided into 180 training and 60 testing images.

After extracting the two set of training patches as explained in Chapter 4, we

subdivide them into training and validation sets with 80% and 20% ratios re-

spectively. Validation set is useful to observe when memorization of training set

occurs, which is a common problem in deep learning. In our experiments, since

we use dropout method, we did not face any overfitting issue.

CNN and FCN implementations are derived from the MatConvNet library

[57] with a number of significant modifications and the networks are trained on a

system that contains NVIDIA GeForce GTX 970 GPU, Intel(R) Xeon(R) E5-2630

v2 2.60GHz CPU and 64GB of RAM.
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Figure 5.1: Learning curves of the four FCNs. Blue and red lines show softmaxlog
loss of training and validation samples respectively. Usually, it is expected to
obtain less error on the training set than the validation set, but FCN-1’s curves
show the otherwise. This may be due to trick used by MatConvNet library that is
aggregating errors of the training set right after mini-batch updates for efficiency
which should be done at the end of an epoch by calculating the error all-in-once.

5.1 ROI Detection

As the learning curves show in Figure 5.1, we train the four fully convolutional net-

works for 50 epochs with the training set extracted. For each FCN, the stochastic

gradient descent algorithm is run to optimize total of 168,290 network parame-

ters on mini batches of 251 images with 0.0001 learning rate, 0.0005 weight decay

and 0.9 momentum. Those hyperparameters are empirically found on a subset of

training data.

5.1.1 Reference Data

Since whole slide saliency detection on breast histopathology is not deeply inves-

tigated in the past, it is no surprise that there is no well-annotated data set for

this task. Therefore, we develop a method to annotate the data set mentioned

above for effective evaluation by using the given tracking information.

1We keep this number relatively low due to memory limitations
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First, as in study [2], we use an assumption of saliency that consists of a set of

rules to extract ground truth data set from screening logs of expert pathologists.

A window is considered salient only if one of the following rules is satisfied:

• An expert zoomed into a region from the previous window and zoomed out

right after.

• An expert waited in the same region for a signification amount of time

(which is 2 seconds in the current settings).

• An expert slightly slide spatially on that region.

The algorithm until this point is directly adopted from the study [2] and all the

implementation details are kept the same, thus we refer the readers to the study

for more information. For each image, we take the union of all windows that

satisfy the rules and create the proper label mask.

Secondly, we remove empty (white) regions that touch the boundaries from the

mask with several morphological operations. The original image is first converted

to Lab color space and then, thresholded at the value of 241 of the L channel.

The resulting binary image is processed with morphological opening, closing and

opening operations in this order with 3, 4, 6 radius disks as structuring elements.

Then, connected components of the image are extracted and the components that

touch boundaries are excluded from the mask formed in the first step. As a result,

the empty (white) regions that contain no information are disregarded during the

evaluation.

5.1.2 Evaluation Criteria

For each testing image, we obtain resulting probability map which is between 0

and 1 from the proposed detection pipeline and generate a binary ground truth

by the above methodology. Additionally, for comparison, we attain the resulting

saliency probabilities of the method proposed by [2] for the same images.
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In order to measure effectiveness of the proposed approach, we first threshold

the two probability maps at various levels and then, resulting binary masks are

compared with the ground truth by counting pixels to calculate the confusion

matrices for each threshold value. We draw some statistical curves using those

confusion matrices such as Precision - Recall and Receiver operating characteristic

(ROC) by averaging those values for 60 test images.

Theoretical efficiency estimations of this gradual pipeline can be viewed in

Table 5.1 where we show the correlation of computational cost at different FCNs

for the values of threshold ratio τ = 0, 0.1, 0.2 . . . 0.9. Let us say computational

cost of processing a unit image in FCN-1 (in 0.625X magnification) is 1. Rela-

tive costs are calculated analytically based on their resolution and the remaining

thresholded area, i.e., the resolution is doubled in each step (corresponding to

quadrupled image size) and τ percent of remaining region is disregarded in every

step. Finally, we calculate the efficiency gained compared to processing an image

in all levels without thresholding or in only the last FCN (which is in 5X mag-

nification). For example, for τ = 0.6, we would detect saliency of an image by

progressive elimination around 20 times faster than we would do by processing

the full image in 5X magnification. In practice, the efficiency gain may be less

than this optimistic estimation because the regions above threshold may be dis-

tributed all over the slide. The ideal case corresponds to having a single square

region that is left after thresholding but in practice, multiple connected compo-

nents with arbitrary shapes may need to be processed by giving their bounding

boxes as input to the subsequent FCN.

An alternative to this adaptive thresholding is having fixed threshold values on

the detection scores. We did not prefer this approach since the values are difficult

to tune where the optimal values might be varying dependent on particular cases.

On the other hand, the current thresholding method is logical in a way of selecting

regions that are relatively more salient than others. For example, on a white paper

with a small text, the most salient region is the text. But when we add a red disk

on the paper, suddenly, the text becomes non-salient compared to the disk. In

a similar manner, we determine salient regions in whole-slides relatively by this

adaptive thresholding.
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Table 5.1: Efficiency table for varying τ parameter values. Computational cost
in all levels of the proposed pipeline is shown regarding the thresholding τ per-
centage of the image in each step. We compare total computational cost of the
pipeline (6th row) with cost needed without thresholding (7th row) and only in
5X magnification.

Threshold Ratios (τ) 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Comput. by FCN-1 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1
Comput. by FCN-2 4 3.24 2.56 1.96 1.44 1 0.64 0.36 0.16 0.04
Comput. by FCN-3 16 11.664 8.192 5.488 3.456 2 1.024 0.432 0.128 0.016
Comput. by FCN-4 64 41.9904 26.2144 15.3664 8.2944 4 1.6384 0.5184 0.1024 0.0064
Total computation 85 57.7944 37.7664 23.5144 13.7904 7.5 3.7024 1.6104 0.5904 0.1624
Efficiency comp.
to all (85)

1 0.6799 0.4443 0.2766 0.1622 0.0882 0.0436 0.0190 0.0069 0.0019

Efficiency comp.
to only 5X (64)

1.3281 030 0.5901 0.3674 0.2155 0.1172 0.0579 0.0252 0.0092 0.0025

5.1.3 Results & Discussion

Figures 5.2, 5.3 and 5.4 show example images and the produced saliency maps.

Figures 5.2 and 5.4 consist of the original images, corresponding ground truths,

our saliency results and [2]’s saliency results. One may notice that the ground

truth is not drawn at optimal precision, which might cause misleading results.

We also see the extent of details achieved by the proposed method in Figure 5.4

whereas [2] produces more blurry results since it processes the image with sliding

windows.

Thanks to the gradual elimination pipeline, while FCNs on higher resolutions

capture the fine-details, they reduce the computation significantly on lower res-

olutions at the beginning. Moreover, in order to survive until the end of the

pipeline, structures must consistently attain high probability in all levels because

of the elimination of regions under a certain percent and taking the weighted

geometric mean of outputs in all levels.

We show the potential of the proposed approach with Precision-Recall and

ROC curves for different τ values in Figure 5.5 and 5.6, respectively. Since only a

small portion of a WSI is considered as salient and we are interested to reduce the

area to be processed in the following steps, it is more sensible to do our evaluation

based on the false positive rate (FPR) rather than precision. For example, while

doubling the precision may mean reducing the computation slightly, halving the
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FPR means almost halving the computation as most areas of WSIs are non-

salient. According to the Figure 5.6, while we observe improvement on both

effectiveness and efficiency monotonically until τ = 0.4, after that increasing τ

values worsens the accuracy. So, there is an application dependent trade-off here,

as higher τ values yield more efficiency according to the Table 5.1.

Our method attains the best area under curve (AUC) estimations of the ROC

curves when τ = 0.3 and τ = 0.4 that are 0.9156 and 0.9153 respectively whereas

[2] obtains an AUC score of 0.9124. We also see when FPR = 0.2, true positive

rate (TPR) of [2] is 0.8552, while our method achieves TPR of 0.8947. Similarly,

in the high TPR region above 0.8, our method results in smaller FPR values

compared to [2]. Only after TPR of 0.98, [2] achieves higher TPR at the same

FPR rate. Clearly, our method has slightly better performance than [2], yet, one

needs to understand two handicaps our method is facing against [2]: (1) The

proposed approach processes only a small portion of the image at utmost 5X

magnification with the efficient pipeline where study [2] uses the whole images

with 40X magnification versions which causes higher computational costs. (2)

Note that the ground truth is generated by using the same saliency assumption

made by [2]. Although, the assumption is just the beginning of their proposal, it

should give remarkable advantage. Thus, despite the mentioned disadvantages,

beating [2] shows the proposed saliency detection approach is promising.
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[ (a) (b) (c) (d) ]

Figure 5.2: Example WSIs for saliency detection. (a) The original images. (b)
The generated ground truth masks. (c) Resulting saliency maps of the proposed
approach (Θ) for τ = 0.4. (d) Outputs of the study [2]. Best viewed with zoom.
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[ (a) (b) (c) (d) ]

Figure 5.3: The resulting saliency maps for τ = 0 which are produced by each of
the FCNs corresponding to the same images used in Figure 5.2. (a) Θ1. (b) Θ2.
(c) Θ3. (d) Θ4. Best viewed with zoom.
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[ (a) (b) (c) (d) ]

Figure 5.4: Cropped and zoomed samples extracted from the WSIs shown in
Figure 5.2. (a) The original images. (b) The generated ground truth masks. (c)
Resulting saliency maps of the proposed approach (Θ) for τ = 0.4. (d) Outputs
of the study [2]. Best viewed with zoom.
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Figure 5.5: Precision-Recall curves of the proposed detection method with differ-
ent τ values and result of the study [2].
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Figure 5.6: ROC curves of the proposed detection method with different τ values
and result of the study [2].
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Figure 5.7: Learning curves of the CNN. Left figure shows the softmax loss of
training and validation samples with blue and red lines, and the right figure shows
the classification errors in a similar way.

5.2 ROI Classification

We train the CNN explained in Section 4.2.2 for the task of classification to five

diagnostic cancer classes. As shown in Figure 5.7, the learning lasts 50 epochs to

optimize total of 5,576,581 network parameters with mini batches of 256 images,

0.01 learning rate, 0.0005 weight decay and 0.9 momentum which are optimized

on a small subset of the training data.

In order to evaluate the effectiveness of the trained CNN, we perform exper-

iments for two tasks: classification of patches with size of 100 × 100 pixels and

classification of WSI which requires the post-processing step.
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Figure 5.8: A region-of-interest size of 886× 957 pixel marked on a WSI that is
classified as ADH. The grid show the size of patches extracted.

5.2.1 Reference Data

The experiments to measure the performance of whole slide classification are

performed on the same test set of 60 WSIs which is labeled by 45 pathologists

and by 3 world-class expert pathologists completely. Consensus decision of the 3

pathologists is considered as the ground truth labels.

For the patch classification task, 209,654 image patches with size of 100× 100

pixels are extracted from the 60 WSIs within the bounding boxes of the consensus

annotations of the 3 expert pathologists. The distribution of the patches over

classes is shown in Table 5.2. The patches are labeled with the ground truth

label of the corresponding WSIs. Yet, the whole slides are labeled with the most

critical diagnosis and the bounding boxes are drawn roughly, which means that

patches that belong to less risky classes might be mislabeled. One such example

is shown in Figure 5.8 where the majority patches belong to non-tissue regions.
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Table 5.2: Distribution of the test data for patch classification task

Category Number of Samples Percentage
NP 10,401 4.96%
P 22,211 10.59%

ADH 34,151 16.29%
DCIS 92,107 43.93%
INV 50,784 24.22%
Total 209,654 100.00%

Table 5.3: Confusion matrix of the patch-based predictions of the proposed clas-
sifier for the test set.

Predictions TPR
/RecallClasses NP P ADH DCIS INV

Ground
Truth

NP 2, 477 945 725 2,027 4,227 0.2381
P 503 7, 246 3,364 7,823 3,275 0.3262
ADH 4,092 9,249 5, 727 10,572 4,511 0.1676
DCIS 5,003 23,074 7,068 47, 412 9,550 0.5147
INV 661 9,145 509 21,491 18, 978 0.3737

FPR 0.0515 0.2263 0.0665 0.3566 0.1357
Precision 0.1945 0.1459 0.3292 0.5307 0.4681

5.2.2 Results & Discussion

5.2.2.1 Patch Classification

The accuracy of our CNN for classification of the extracted patches into 5 di-

agnostic classes is 39.04%. Given the accuracy in the validation set is around

85%, this accuracy is significantly low. This leads us to consider the possibility of

memorization since validation and training sets are extracted from the same WSIs

and therefore the network might have overfitted somehow. The confusion matrix

of the classification results (shown in Table 5.3 where 63.21% of the wrong classi-

fications belongs to lower triangle), also supports the hypothesis that the ground

truth is biased such that all patches are labeled as the most dangerous class of

the corresponding WSIs whereas our classifier tends to classify those patches into

their accurate classes. Thus, our algorithm does not necessarily underestimate

diagnostic categories.
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Figure 5.9: Precision - recall and ROC curves of the patch classification perfor-
mance for five classes.
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Other than predicted labels, we also have likelihood probabilities of each class

for all the samples. For each of the five classes, we do binary classification indi-

vidually for all the samples by thresholding their corresponding likelihood prob-

abilities at different levels and draw five precision - recall and ROC curves as

shown in Figure 5.9. This graphs supports the same argument mentioned above

as we observe the DCIS and INV classes obtain 3-5 times higher precision than

NP and P classes which are less critical for the patients and therefore, even if

they exist in the ROI, more serious classes are preferred to them.

5.2.2.2 WSI Classification

For the classification of a WSI, we first obtain the class probability maps from

the fully convolutionalized CNN which consist five probabilities for each pixel

representing the class likelihoods and we downsample them by a factor of 7 as

explained in Chapter 4. Second, as prior step, we extract the saliency map of

the WSI as calculated in Section 5.1 and threshold it such that only the top

15% salient pixels remains. Then we find the classes that achieve the greatest

probability at pixels detected as salient. The final class prediction of the WSI

is decided by majority voting such that the most frequent winner class becomes

the final prediction. The threshold parameter and the subsampling factor are

optimized by maximizing the performance on the training set. Figures 5.10, 5.11,

5.12, 5.13, 5.14 show examples of slide-based classification for five WSIs including

their winner class maps, saliency maps and probability maps for the five classes

individually.

We evaluate the performance of the final predictions with the ground truth la-

bels provided. Besides, we provide the performance when we exclude the saliency

detection part in Table 5.4 where we also show the mean accuracy of the 3 expert

and other 45 pathologists on both training and test sets. The confusion matrices

and class-based TPR, FPR and precision scores of our CNN are shown in Tables

5.5 and 5.6 for training and test sets respectively.

The proposed system achieves a recognition rate of 55% which is comparable
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Table 5.4: Classification accuracies of the slide-based predictions of the proposed
method and the pathologists.

Training Set Test Set
3 Expert Pathologists 87.96 ± 3.57 % 87.78,± 2.55 %
Other 45 Pathologists 68.07 ± 10.36 % 65.44 ± 7.07 %
Proposed Approach 82.22 % 55 %
Proposed Approach w/o Saliency Detection 12.78 % 23.33 %

Table 5.5: Confusion matrix of the slide-based predictions of the proposed clas-
sifier for the training set.

Predictions TPR
/RecallClasses NP P ADH DCIS INV

Ground Truth

NP 5 1 0 1 1 0.6250
P 0 45 1 3 1 0.9000
ADH 0 10 32 8 0 0.6400
DCIS 0 3 0 49 3 0.8909
INV 0 0 0 0 17 1

FPR 0 0.1051 0.0075 0.0936 0.0301
Precision 1 0.7627 0.9697 0.8033 0.7727

to the gold standard recorded by 45 human observers. A straightforward method

for comparison just with the accuracies of individual pathologists shows us that

our approach beats 4 out of 45 pathologists. It also performs better than or equal

to 26 pathologists for ADH class, 21 for P class, 16 for NP class, 3 for DCIS class

and no one for INV class.

Additionally, we have applied McNemar’s statistical test [58] to compare the

proposed classifier with the other 45 pathologists’ performance. Given the predic-

tion of our classifier and diagnoses of the pathologists, we performed 45 McNemar

tests where the null hypothesis is that there is no difference between the classifier

and the pathologist. The tests are carried out with 5% significance level, and

could reject the null hypothesis for 13 pathologists which means the differences

between the performances are significant between our classifier and each indi-

vidual. For the remaining 32 pathologists, we could not reject the hypothesis

showing that we cannot claim their performances are significantly different than

ours.
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Table 5.6: Confusion matrix of the slide-based predictions of the proposed clas-
sifier for the test set.

Predictions TPR
/RecallClasses NP P ADH DCIS INV

Ground Truth

NP 0 2 0 1 2 0
P 0 9 2 2 0 0.6923
ADH 0 4 4 8 0 0.2500
DCIS 0 2 0 17 2 0.8095
INV 0 0 0 2 3 0.6000

FPR - 0.1644 0.0434 0.3207 0.0705
Precision - 0.5294 0.6667 0.5667 0.4286

Further, we performed a z-test with 10% significance where the null hypothesis

is that our score belongs to the same normal distribution of the 45 pathologists’

accuracies. We could not reject the null hypothesis which indicates our perfor-

mance is somewhat similar to the pathologists.

These results indicate the hardness of the data set where the conflict among

pathologists is also shown to be noticeably high by other studies and our method

performs accurate enough to catch up the performance of human pathologists.

Moreover, the effects of the prior saliency detection step that motivate its neces-

sity are two-fold. First, we can avoid the computation of 85% of the image and

improve efficiency around 6.6 times. Second, as shown in Table 5.4, the resulting

performance is influenced significantly by means of effectiveness.
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(a) The original Image (b) Winner Classes (c) Saliency Map

(d) Prob. of NP (e) Prob. of P (f) Prob. of ADH (g) Prob. of DCIS (h) Prob. of INV

Figure 5.10: A slide-based classification example of a WSI labeled as NP class.
(a) The original Image. (b) Winner classes of each pixel where colors (i.e., white,
yellow, green, blue, red) represent the five classes (i.e., NP, P, ADH, DCIS, INV
respectively). (c) Corresponding saliency map obtained in Section 5.1. (d-h)
Pixel-wise likelihood maps of five classes (i.e., NP, P, ADH, DCIS, INV respec-
tively) according to the prediction of our classifier. This sample is wrongly clas-
sified as P after post-processing. Best viewed in color and with zoom.
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(a) The original Image (b) Winner Classes (c) Saliency Map

(d) Prob. of NP (e) Prob. of P (f) Prob. of ADH (g) Prob. of DCIS (h) Prob. of INV

Figure 5.11: A slide-based classification example of a WSI labeled as P class. (a)
The original Image. (b) Winner classes of each pixel where colors (i.e., white,
yellow, green, blue, red) represent the five classes (i.e., NP, P, ADH, DCIS, INV
respectively). (c) Corresponding saliency map obtained in Section 5.1. (d-h)
Pixel-wise likelihood maps of five classes (i.e., NP, P, ADH, DCIS, INV respec-
tively) according to the prediction of our classifier. This sample is correctly
classified as P after post-processing. Best viewed in color and with zoom.
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(a) The original Image (b) Winner Classes (c) Saliency Map

(d) Prob. of NP (e) Prob. of P (f) Prob. of ADH (g) Prob. of DCIS (h) Prob. of INV

Figure 5.12: A slide-based classification example of a WSI labeled as ADH class.
(a) The original Image. (b) Winner classes of each pixel where colors (i.e., white,
yellow, green, blue, red) represent the five classes (i.e., NP, P, ADH, DCIS, INV
respectively). (c) Corresponding saliency map obtained in Section 5.1. (d-h)
Pixel-wise likelihood maps of five classes (i.e., NP, P, ADH, DCIS, INV respec-
tively) according to the prediction of our classifier. This sample is correctly
classified as ADH after post-processing. Best viewed in color and with zoom.
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(a) The original Image (b) Winner Classes (c) Saliency Map

(d) Prob. of NP (e) Prob. of P (f) Prob. of ADH (g) Prob. of DCIS (h) Prob. of INV

Figure 5.13: A slide-based classification example of a WSI labeled as DCIS class.
(a) The original Image. (b) Winner classes of each pixel where colors (i.e., white,
yellow, green, blue, red) represent the five classes (i.e., NP, P, ADH, DCIS, INV
respectively). (c) Corresponding saliency map obtained in Section 5.1. (d-h)
Pixel-wise likelihood maps of five classes (i.e., NP, P, ADH, DCIS, INV respec-
tively) according to the prediction of our classifier. This sample is correctly
classified as DCIS after post-processing. Best viewed in color and with zoom.
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(a) The original Image (b) Winner Classes (c) Saliency Map

(d) Prob. of NP (e) Prob. of P (f) Prob. of ADH (g) Prob. of DCIS (h) Prob. of INV

Figure 5.14: A slide-based classification example of a WSI labeled as INV class.
(a) The original Image. (b) Winner classes of each pixel where colors (i.e., white,
yellow, green, blue, red) represent the five classes (i.e., NP, P, ADH, DCIS, INV
respectively). (c) Corresponding saliency map obtained in Section 5.1. (d-h)
Pixel-wise likelihood maps of five classes (i.e., NP, P, ADH, DCIS, INV respec-
tively) according to the prediction of our classifier. This sample is wrongly clas-
sified as DCIS after post-processing. Best viewed in color and with zoom.
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5.3 Visualization

In the visualization experiments, we use the FeatureVis library [47] that imple-

ments occlusion and deconvolution methods as explained in [48] and [50] respec-

tively. For activation maximization, mNeuron library [53] is adopted to produce

synthesized images with the settings of [52].

We begin with the occlusion method that exposes the spatial effectiveness of

the input image to the prediction by covering it partially with noise. As shown in

Fig. 5.15, this visualization reveals critical information about the tissue structures

that caused classifying or not classifying to particular classes. For example, 2.,

4. and 9. rows show that intertwined nuclei may lead to classification of Invasive

cancer. Last two rows are clear examples of why we need a prior saliency detection

step since they are obviously empty regions, yet confusing the CNN. 7. and

10. rows contain wrong classification examples where a possible scenario is that

the images are classified correctly but since the ground truth labels are marked

according to the most dangerous class in the WSI, it seems to be misclassified.

Second, we show the top-9 responsive patches for each neuron and visualization

of the contributions of their pixels in the input space in Figures 5.16, 5.17 and

5.18. The reconstructions are built by projecting the activations down to the

input space with deconvolutional layers. One may notice that how filters develop

abstract features based on simple patterns over the layers and how they group the

patches with similar characteristic while expanding invariance such as shape and

rotation. We also see that the low layers implements the fundamental features

such as horizontal, vertical edges, T-junctions or blobs. Toward higher layers, we

can observe various filters that are sensitive to particular arrangements of nuclei,

lobules and duct structures. We leave the comment to the experts for further

investigation of how similar CNN’s features to those they are looking for during

their clinical analysis.

Finally, we show the synthesized images that produce the maximum activation

at the corresponding neurons in Figures 5.19 and 5.20. This technique starts with
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The Samples NP P ADH DCIS INV

(a) (b) (c) (d) (e) (f)

Figure 5.15: Classifications of several sample patches is visualized with occlusion
method. (a) The original sample images with a size of 100 × 100 pixel. (b-f)
Outputs of the occlusion method for five diagnostic classes overlaid on the original
images. Ground truth diagnoses are indicated by green boxes. Predictions of
our CNN are shown with red bar at the right side of the corresponding overlay.
Warmer colors resemble higher effect of that region for the classification to the
particular class. This effect may be either positive or negative, which means even
if an image is not classified to a class, warmer colored pixels have the higher
influence on that decision. Best viewed in color and with zoom.
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1. CONV layer

2. CONV layer

3. CONV layer

Figure 5.16: Visualization of the first three convolutional layers of the trained
CNN model by the deconvolution method. For each layer, the top-9 activations
of 64 neurons (left) and their corresponding original image patches (right) are
shown as 3×3 groups. Color in left squares does not represent natural spectrum,
but the activation projection and the color contrast artificially enhanced for better
view. Best viewed in color and with zoom.
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4. CONV layer

5. CONV layer

6. CONV layer

Figure 5.17: Visualization of the second three convolutional layers of the trained
CNN model by the deconvolution method. For each layer, the top-9 activations of
64 neurons (left) and their corresponding original image patches (right) are shown
as 3 × 3 groups. Color in left squares does not represent natural spectrum, but
the activation projection and the color contrast artificially enhanced for better
view. Best viewed in color and with zoom.
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1. FC layer

2. FC layer

3. and the last FC layer

Figure 5.18: Visualization of the three fully-connected layers of the trained CNN
model by the deconvolution method. For each layer, the top-9 activations of 64
neurons (left) and their corresponding original image patches (right) are shown
as 3 × 3 groups. Color in left squares does not represent natural spectrum, but
the activation projection and the color contrast artificially enhanced for bet-
ter view. The last FC layer consists of five neurons that correspond to five
classes. From top-left to bottom-right, the correspondence order is as follows:
NP,P,ADH,DCIS,INV. Best viewed in color and with zoom.
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(a) 1. CONV layer

(b) 2. CONV layer
(c) 3. CONV layer

(d) 4. CONV layer (e) 5. CONV layer

Figure 5.19: The synthesized images that activate neurons the most. Best viewed
in color and with zoom.
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(a) 6. CONV layer (b) 1. FC layer

(c) 2. FC layer (d) 3. and last FC layer

Figure 5.20: The synthesized images that activate neurons the most. Best viewed
in color and with zoom.
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a white noise and updates it in the direction of negative gradient until convergence

such that the activation of the neuron is maximized. This gives us intuition about

the selectivity of the neurons. While we observe the varying patterns of neurons,

the levels of abstraction increase toward the end of the network. We also noticed

a number of dead neurons in the second layer which indicates less number of

neurons could be sufficient in this layer.

Although, in theory, the activation maximization method should be the most

straightforward method among the visualization methods, tuning its hyperpa-

rameters is its drawback since the quality of the resulting synthesized images are

interpreted only by our visual objection which is not hundred percent reliable.

Unfortunately, we fail to obtain natural images, yet the results are still giving

insight about the filters’ nature.
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Chapter 6

Conclusion

In this thesis, we presented a complete CAD system for breast cancer diagnosis

that inputs an RGB whole slide histopathology image and predict its cancer type

over five diagnostic classes. The system includes: (1) a prior saliency detection

step developed by training four sequential FCN models which imitates the way

human pathologists perform diagnosis, (2) classification of the detected ROIs with

the features learned by CNN, (3) a post WSI classification step that predicts a

single diagnosis for one WSI out of the probability maps of classes. In other

words, we inherently eliminate the healthy tissues in the detection part, and then

classify the WSI according to the prediction of the majority class among the

remaining cancerous regions.

We demonstrated the effectiveness and efficiency of the proposed approach on

two comparisons: (1) obtained better saliency detection than the state-of-the-art

method on the same data set, (2) approximation to the average accuracy of 45

human experts in WSI classification task where our method is not statistically

different than the 32 experts with McNemar’s tests.

Finally, we illustrate the visualizations of the features trained for the classifi-

cation task that show that the features learned are purposeful and give intuition

about what sort of features are discriminative.
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In the future work, it could be studied how the proposed approach can be

extended by including a more advanced post-processing for slide-based classifi-

cation that consists of feature extraction and training another classifier for this

task. We can also develop the networks further by simply enlarging them to

enhance their receptive fields and learning capacity or by introducing multi-scale

CNNs to capture textural and abstract information at the same time. Another

direction would be adopting multi-instance multi-label learning since the whole-

slides may include many regions at different diagnostic levels. Finally, a learned

model may be transferred to other networks to initiate them instead of training

all the networks from scratch.
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